CryptoDB
Mohammad Mahzoun
Publications
Year
Venue
Title
2024
ASIACRYPT
Modelling Ciphers with Overdefined Systems of Quadratic Equations: Application to Friday, Vision, RAIN and Biscuit
Abstract
Overdefined polynomial systems have the potential to lead to reduced complexity in solving procedures. In this work, we study how to overdefine the system of equations to describe the arithmetic oriented (AO) ciphers Friday, Vision, and RAIN, as well as a special system of quadratic equations over $\mathbb F_{2^{\ell}}$ used in the post-quantum signature scheme Biscuit. Our method is inspired by Courtois-Pieprzyk's and Murphy-Robshaw's methods to model AES with overdefined systems of quadratic equations over $\mathbb F_2$ and $\mathbb F_{2^8}$, respectively. However, our method is more refined and much simplified compared with Murphy-Robshaw's method, since it can take full advantage of the low-degree $\mathbb F_2$-linearized affine polynomials used in Friday and Vision, and the overdefined system of equations over $\mathbb F_{2^{\ell}}$ can be described in a clean way with our method. For RAIN, we instead consider quadratic Boolean equations rather than equations over large finite fields $\mathbb F_{2^{\ell}}$. Specifically, we demonstrate that the special structure of RAIN allows us to set up much more linearly independent quadratic Boolean equations than those obtained only with Courtois-Pieprzyk's method. Moreover, we further demonstrate that the underlying key-recovery problem in Biscuit (NIST PQC Round 1 Additional Signatures) can also be described by solving a much overdefined system of quadratic equations over $\mathbb F_{2^{\ell}}$. On the downside, the constructed systems of quadratic equations for these ciphers cannot be viewed as semi-regular, which makes it challenging to upper bound the complexity of the Gr\"{o}bner basis attack. However, such a new modelling method can significantly improve the lower bound of the complexity of the Gr\"{o}bner basis attacks on these ciphers, i.e., we view the complexity of solving a random system of quadratic equations of the same scale as the lower bound. How to better estimate the upper and lower bounds of the Gr\"{o}bner basis attacks on these ciphers based on our modelling method is left as an open problem.
2023
TOSC
Algebraic Attacks on RAIN and AIM Using Equivalent Representations
Abstract
Designing novel symmetric-key primitives for advanced protocols like secure multiparty computation (MPC), fully homomorphic encryption (FHE) and zero-knowledge proof systems (ZK), has been an important research topic in recent years. Many such existing primitives adopt quite different design strategies from conventional block ciphers. Notable features include that many of these ciphers are defined over a large finite field, and that a power map is commonly used to construct the nonlinear component due to its efficiency in these applications as well as its strong resistance against the differential and linear cryptanalysis. In this paper, we target the MPC-friendly ciphers AIM and RAIN used for the post-quantum signature schemes AIMer (CCS 2023 and NIST PQC Round 1 Additional Signatures) and Rainier (CCS 2022), respectively. Specifically, we can find equivalent representations of 2-round RAIN and full-round AIM, respectively, which make them vulnerable to either the polynomial method, or the crossbred algorithm, or the fast exhaustive search attack. Consequently, we can break 2-round RAIN with the 128/192/256-bit key in only 2111/2170/2225 bit operations. For full-round AIM with the 128/192/256-bit key, we could break them in 2136.2/2200.7/2265 bit operations, which are equivalent to about 2115/2178/2241 calls of the underlying primitives. In particular, our analysis indicates that AIM does not reach the required security levels by the NIST competition.
2022
TCHES
ECDSA White-Box Implementations: Attacks and Designs from CHES 2021 Challenge
Abstract
Despite the growing demand for software implementations of ECDSA secure against attackers with full control of the execution environment, scientific literature on ECDSA white-box design is scarce. The CHES 2021 WhibOx contest was thus held to assess the state-of-the-art and encourage relevant practical research, inviting developers to submit ECDSA white-box implementations and attackers to break the corresponding submissions.In this work, attackers (team TheRealIdefix) and designers (team zerokey) join to describe several attack techniques and designs used during this contest. We explain the methods used by the team TheRealIdefix, which broke the most challenges, and we show the efficiency of each of these methods against all the submitted implementations. Moreover, we describe the designs of the two winning challenges submitted by the team zerokey; these designs represent the ECDSA signature algorithm by a sequence of systems of low-degree equations, which are obfuscated with affine encodings and extra random variables and equations.The WhibOx contest has shown that securing ECDSA in the white-box model is an open and challenging problem, as no implementation survived more than two days. In this context, our designs provide a starting methodology for further research, and our attacks highlight the weak points future work should address.
Coauthors
- Guillaume Barbu (1)
- Ward Beullens (1)
- Emmanuelle Dottax (1)
- Christophe Giraud (1)
- Agathe Houzelot (1)
- Chaoyun Li (1)
- Fukang Liu (2)
- Mohammad Mahzoun (3)
- Willi Meier (2)
- Morten Øygarden (1)
- Adrián Ranea (1)
- Jianrui Xie (1)