CryptoDB
Aurélien Boeuf
Publications and invited talks
Year
Venue
Title
2025
CRYPTO
Improved Resultant Attack against Arithmetization-Oriented Primitives
Abstract
In the last decade, the introduction of advanced crypto- graphic protocols operating on large finite fields F_q has raised the need for efficient cryptographic primitives in this setting, commonly referred to as Arithmetization-Oriented (AO). The cryptanalysis of AO hash functions is essentially done through the study of the CICO problem on the underlying permutation. Two recent works at Crypto 2024 and Asiacrypt 2024 managed to solve the CICO problem much more efficiently than traditional Gröbner basis methods, respectively using advanced Gröbner basis techniques and resultants.
In this paper, we propose an attack framework based on resultants that applies to a wide range of AO permutations and improves significantly upon these two recent works. Our improvements mainly come from an efficient reduction procedure that we propose and rigorously analyze, taking advantage of fast multivariate multiplication. We present the most efficient attacks on Griffin, Arion, Anemoi, and Rescue. We show that most variants of Griffin, Arion and Anemoi fail to reach the claimed security level. For the first time, we successfully break a parameter set of Rescue, namely the 512-bit security in 2^{475}. The presented theory and complexity estimates are backed up with experimental attacks. Notably, we practically find CICO solutions for 8 out of 10 rounds of Griffin, and 11 out of 20 rounds of Anemoi, and 6 out of 18 rounds of Rescue, improving by respectively 1, 3 and 1 rounds on the previous best practical attacks.
2024
CRYPTO
The Algebraic Freelunch: Efficient Gröbner Basis Attacks Against Arithmetization-Oriented Primitives
Abstract
In this paper, we present a new type of algebraic attack that applies to many recent arithmetization-oriented families of permutations, such as those used in Griffin, Anemoi, ArionHash, and XHash8, whose security relies on the hardness of the constrained-input constrained-output (CICO) problem.
We introduce the FreeLunch approach: the monomial ordering is chosen so that the natural polynomial system encoding the CICO problem already is a Gröbner basis. In addition, we present a new dedicated resolution algorithm for FreeLunch systems, of complexity lower than applicable state-of-the-art FGLM algorithms.
We show that the FreeLunch approach challenges the security of full-round instances of Anemoi, Arion and Griffin. We confirm these theoretical results with experimental results on those three permutations. In particular, using the FreeLunch attack combined with a new technique to bypass 3 rounds of Griffin, we recover a CICO solution for 7 out of 10 rounds of Griffin in less than four hours on one core of AMD EPYC 7352 (2.3GHz).
2023
TOSC
Propagation of Subspaces in Primitives with Monomial Sboxes: Applications to Rescue and Variants of the AES
★
Abstract
Motivated by progress in the field of zero-knowledge proofs, so-called Arithmetization-Oriented (AO) symmetric primitives have started to appear in the literature, such as MiMC, Poseidon or Rescue. Due to the design constraints implied by this setting, these algorithms are defined using simple operations over large (possibly prime) fields. In particular, many rely on simple low-degree monomials for their non-linear layers, essentially using x ↦ x3 as an S-box.In this paper, we show that the structure of the material injected in each round (be it subkeys in a block cipher or round constants in a public permutation) could allow a specific pattern, whereby a well-defined affine space is mapped to another by the round function, and then to another, etc. Such chains of one-dimensional subspaces always exist over 2 rounds, and they can be extended to an arbitrary number of rounds, for any linear layer, provided that the round-constants are well chosen.As a consequence, for several ciphers like Rescue, or a variant of AES with a monomial Sbox, there exist some round-key sequences for which the cipher has an abnormally high differential uniformity, exceeding the size of the Sbox alphabet.Well-known security arguments, in particular based on the wide-trail strategy, have been reused in the AO setting by many designers. Unfortunately, our results show that such a traditional study may not be sufficient to guarantee security. To illustrate this, we present two new primitives (the tweakable block cipher Snare and the permutation-based hash function Stir) that are built using state-of-the-art security arguments, but which are actually deeply flawed. Indeed, the key schedule of Snare ensures the presence of a subspace chain that significantly simplifies an algebraic attack against it, and the round constants of Stir force the presence of a subspace chain aligned with the rate and capacity of the permutation. This in turns implies the existence of many easy-to-find solutions to the so-called CICO problem.
Coauthors
- Irati Manterola Ayala (1)
- Augustin Bariant (2)
- Aurélien Boeuf (3)
- Pierre Briaud (1)
- Anne Canteaut (1)
- Maël Hostettler (1)
- Axel Lemoine (1)
- Morten Øygarden (2)
- Léo Perrin (2)
- Håvard Raddum (2)