International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Irati Manterola Ayala

Publications and invited talks

Year
Venue
Title
2025
TOSC
Zeroed Out: Cryptanalysis of Weak PRFs in Alternating Moduli
Irati Manterola Ayala Håvard Raddum
The growing adoption of secure multi-party computation (MPC) has driven the development of efficient symmetric key primitives tailored for MPC. Recent advances, such as the alternating moduli paradigm, have shown promise but leave room for cryptographic and practical improvements. In this paper, we analyze a family of weak pseudorandom functions (wPRF) proposed at Crypto 2024, focusing on their One-to-One parameter sets. We demonstrate that these configurations fail to achieve their intended one-to-one mappings and exploit this observation to develop an efficient key recovery attack.Our analysis reveals critical vulnerabilities, reducing the complexity of key recovery to O(2λ/2 log2 λ) for the Standard One-to-One wPRF and O(20.84λ) for the Reversed Moduli variant – both substantially below their claimed λ-bit security. We validate our findings through experimental evaluation, confirming alignment between predicted and observed attack complexities.
2024
CRYPTO
The Algebraic Freelunch: Efficient Gröbner Basis Attacks Against Arithmetization-Oriented Primitives
In this paper, we present a new type of algebraic attack that applies to many recent arithmetization-oriented families of permutations, such as those used in Griffin, Anemoi, ArionHash, and XHash8, whose security relies on the hardness of the constrained-input constrained-output (CICO) problem. We introduce the FreeLunch approach: the monomial ordering is chosen so that the natural polynomial system encoding the CICO problem already is a Gröbner basis. In addition, we present a new dedicated resolution algorithm for FreeLunch systems, of complexity lower than applicable state-of-the-art FGLM algorithms. We show that the FreeLunch approach challenges the security of full-round instances of Anemoi, Arion and Griffin. We confirm these theoretical results with experimental results on those three permutations. In particular, using the FreeLunch attack combined with a new technique to bypass 3 rounds of Griffin, we recover a CICO solution for 7 out of 10 rounds of Griffin in less than four hours on one core of AMD EPYC 7352 (2.3GHz).
2023
CRYPTO
Cryptanalysis of Symmetric Primitives over Rings and a Key Recovery Attack on Rubato
Symmetric primitives are a cornerstone of cryptography, and have traditionally been defined over fields, where cryptanalysis is now well understood. However, a few symmetric primitives defined over rings Z _q for a composite number q have recently been proposed, a setting where security is much less studied. In this paper we focus on studying established algebraic attacks typically defined over fields and the extent of their applicability to symmetric primitives defined over the ring of integers modulo a composite q. Based on our analysis, we present an attack on full Rubato, a family of symmetric ciphers proposed by Ha et al. at Eurocrypt 2022 designed to be used in a transciphering framework for approximate fully homomorphic encryption. We show that at least 25% of the possible choices for q satisfy certain conditions that lead to a successful key recovery attack with complexity significantly lower than the claimed security level for five of the six ciphers in the Rubato family.