## CryptoDB

### Julian Nowakowski

#### Publications

**Year**

**Venue**

**Title**

2022

EUROCRYPT

Approximate Divisor Multiples - Factoring with Only a Third of the Secret CRT-Exponents
📺
Abstract

We address Partial Key Exposure attacks on CRT-RSA on secret exponents $d_p, d_q$ with small public exponent $e$. For constant $e$ it is known that the knowledge of half of the bits of one of $d_p, d_q$ suffices to factor the RSA modulus $N$ by Coppersmith's famous {\em factoring with a hint} result. We extend this setting to non-constant $e$. Somewhat surprisingly, our attack shows that RSA with $e$ of size $N^{\frac 1 {12}}$ is most vulnerable to Partial Key Exposure, since in this case only a third of the bits of both $d_p, d_q$ suffices to factor $N$ in polynomial time, knowing either most significant bits (MSB) or least significant bits (LSB).
Let $ed_p = 1 + k(p-1)$ and $ed_q = 1 + \ell(q-1)$. On the technical side, we find the factorization of $N$ in a novel two-step approach. In a first step we recover $k$ and $\ell$ in polynomial time, in the MSB case completely elementary and in the LSB case using Coppersmith's lattice-based method. We then obtain the prime factorization of $N$ by computing the root of a univariate polynomial modulo $kp$ for our known $k$. This can be seen as an extension of Howgrave-Graham's {\em approximate divisor} algorithm to the case of {\em approximate divisor multiples} for some known multiple $k$ of an unknown divisor $p$ of $N$. The point of {\em approximate divisor multiples} is that the unknown that is recoverable in polynomial time grows linearly with the size of the multiple $k$.
Our resulting Partial Key Exposure attack with known MSBs is completely rigorous, whereas in the LSB case we rely on a standard Coppersmith-type heuristic. We experimentally verify our heuristic, thereby showing that in practice we reach our asymptotic bounds already using small lattice dimensions. Thus, our attack is highly practical.

2021

ASIACRYPT

Partial Key Exposure Attack on Short Secret Exponent CRT-RSA
📺
Abstract

Let $(N,e)$ be an RSA public key, where $N=pq$ is the product of equal bitsize primes $p,q$. Let $d_p, d_q$ be the corresponding secret CRT-RSA exponents.
Using a Coppersmith-type attack, Takayasu, Lu and Peng (TLP) recently showed that one obtains the factorization of $N$ in polynomial time, provided that $d_p, d_q \leq N^{0.122}$. Building on the TLP attack, we show the first {\em Partial Key Exposure} attack on short secret exponent CRT-RSA. Namely, let $N^{0.122} \leq d_p, d_q \leq N^{0.5}$. Then we show that a constant known fraction of the least significant bits (LSBs) of both $d_p, d_q$ suffices to factor $N$ in polynomial time.
Naturally, the larger $d_p,d_q$, the more LSBs are required.
E.g. if $d_p, d_q$ are of size $N^{0.13}$, then we have to know roughly a $\frac 1 5$-fraction of their LSBs, whereas for $d_p, d_q$ of size $N^{0.2}$ we require already knowledge of a $\frac 2 3$-LSB fraction. Eventually, if $d_p, d_q$ are of full size $N^{0.5}$, we have to know all of their bits.
Notice that as a side-product of our result we obtain a heuristic deterministic polynomial time factorization algorithm on input $(N,e,d_p,d_q)$.

#### Coauthors

- Alexander May (2)
- Santanu Sarkar (2)