International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Yao Sun

Publications

Year
Venue
Title
2020
TOSC
Differential Attacks on CRAFT Exploiting the Involutory S-boxes and Tweak Additions 📺
CRAFT is a lightweight tweakable block cipher proposed at FSE 2019, which allows countermeasures against Differential Fault Attacks to be integrated into the cipher at the algorithmic level with ease. CRAFT employs a lightweight and involutory S-box and linear layer, such that the encryption function can be turned into decryption at a low cost. Besides, the tweakey schedule algorithm of CRAFT is extremely simple, where four 64-bit round tweakeys are generated and repeatedly used. Due to a combination of these features which makes CRAFT exceedingly lightweight, we find that some input difference at a particular position can be preserved through any number of rounds if the input pair follows certain truncated differential trails. Interestingly, in contrast to traditional differential analysis, the validity of this invariant property is affected by the positions where the constant additions take place. We use this property to construct “weak-tweakey” truncated differential distinguishers of CRAFT in the single-key model. Subsequently, we show how the tweak additions allow us to convert these weak-tweakey distinguishers into ordinary secret-key distinguishers based on which key-recovery attacks can be performed. Moreover, we show how to construct MILP models to search for truncated differential distinguishers exploiting this invariant property. As a result, we find a 15-round truncated differential distinguisher of CRAFT and extend it to a 19-round key-recovery attack with 260.99 data, 268 memory, 294.59 time complexity, and success probability 80.66%. Also, we find a 14-round distinguisher with probability 2−43 (experimentally verified), a 16-round distinguisher with probability 2−55, and a 20-round weak-key distinguisher (2118 weak keys) with probability 2−63. Experiments on round-reduced versions of the distinguishers show that the experimental probabilities are sometimes higher than predicted. Finally, we note that our result is far from threatening the security of the full CRAFT.
2019
EUROCRYPT
Preimage Attacks on Round-Reduced Keccak-224/256 via an Allocating Approach 📺
Ting Li Yao Sun
We present new preimage attacks on standard Keccak-224 and Keccak-256 that are reduced to 3 and 4 rounds. An allocating approach is used in the attacks, and the whole complexity is allocated to two stages, such that fewer constraints are considered and the complexity is lowered in each stage. Specifically, we are trying to find a 2-block preimage, instead of a 1-block one, for a given hash value, and the first and second message blocks are found in two stages, respectively. Both the message blocks are constrained by a set of newly proposed conditions on the middle state, which are weaker than those brought by the initial values and the hash values. Thus, the complexities in the two stages are both lower than that of finding a 1-block preimage directly. Together with the basic allocating approach, an improved method is given to balance the complexities of two stages, and hence, obtains the optimal attacks. As a result, we present the best theoretical preimage attacks on Keccak-224 and Keccak-256 that are reduced to 3 and 4 rounds. Moreover, we practically found a (second) preimage for 3-round Keccak-224 with a complexity of $$2^{39.39}$$.
2017
TOSC
Preimage Attacks on the Round-reduced Keccak with Cross-linear Structures
In this paper, based on the work pioneered by Aumasson and Meier, Dinur et al., and Guo et al., we construct some new delicate structures from the roundreduced versions of Keccakhash function family. The new constructed structures are called cross-linear structures, because linear polynomials appear across in different equations of these structures. And we apply cross-linear structures to do preimage attacks on some instances of the round-reduced Keccak. There are three main contributions in this paper. First, we construct a kind of cross-linear structures by setting the statuses carefully. With these cross-linear structures, guessing the value of one linear polynomial could lead to three linear equations (including the guessed one). Second, for some special cases, e.g. the 3-round Keccakchallenge instance Keccak[r=240, c=160, nr=3], a more special kind of cross-linear structures is constructed, and these structures can be used to obtain seven linear equations (including the guessed) if the values of two linear polynomials are guessed. Third, as applications of the cross-linear structures, we practically found a preimage for the 3-round KeccakChallenge instance Keccak[r=240, c=160, nr=3]. Besides, by constructing similar cross-linear structures, the complexity of the preimage attack on 3-round Keccak-256/SHA3-256/SHAKE256 can be lowered to 2150/2151/2153 operations, while the previous best known result on Keccak-256 is 2192.

Coauthors

Hao Guo (1)
Lei Hu (1)
Ting Li (2)
Maodong Liao (1)
Danping Shi (1)
Ling Sun (1)
Siwei Sun (1)
Meiqin Wang (1)
Dingkang Wang (1)