International Association for Cryptologic Research

International Association
for Cryptologic Research


Ting Li


SuperBall: A New Approach for MILP Modelings of Boolean Functions
Ting Li Yao Sun
Mixed Integer Linear Programming (MILP) solver has become one of the most powerful tools of searching for cryptographic characteristics. It has great significance to study the influencing factors of the efficiency of MILP models. For this goal, different types of MILP models should be constructed and carefully studied. As Boolean functions are the fundamental cryptographic components, in this paper, we study the descriptive models of Boolean functions. Here, a descriptive model of a Boolean function refers to a set of integer linear inequalities, where the set of the binary solutions to these inequalities is exactly the support of this Boolean function. Previously, it is hard to construct various types of descriptive models for study, one important reason is that only a few kinds of inequalities can be generated. On seeing this, a new approach, called SuperBall, is proposed to generate inequalities. The SuperBall approach is based on the method of undetermined coefficients, and it could generate almost all kinds of inequalities by appending appropriate constraints. Besides, the Sasaki-Todo Algorithm is also improved to construct the descriptive models from a set of candidate inequalities by considering both their sizes and strengths, while the strengths of descriptive models have not been considered in the previous works. As applications, we constructed several types of descriptive models for the Sboxes of Liliput, SKINNY-128, and AES. The experimental results first prove that the diversity of the inequalities generated by the SuperBall approach is good. More importantly, the results show that the strengths of descriptive model do affect the efficiencies, and although there is not a type of descriptive model having the best efficiency in all experiments, we did find a specific type of descriptive model which has the minimal size and relatively large strength, and the descriptive models of this type have better efficiencies in most of our experiments.
Preimage Attacks on Round-Reduced Keccak-224/256 via an Allocating Approach 📺
Ting Li Yao Sun
We present new preimage attacks on standard Keccak-224 and Keccak-256 that are reduced to 3 and 4 rounds. An allocating approach is used in the attacks, and the whole complexity is allocated to two stages, such that fewer constraints are considered and the complexity is lowered in each stage. Specifically, we are trying to find a 2-block preimage, instead of a 1-block one, for a given hash value, and the first and second message blocks are found in two stages, respectively. Both the message blocks are constrained by a set of newly proposed conditions on the middle state, which are weaker than those brought by the initial values and the hash values. Thus, the complexities in the two stages are both lower than that of finding a 1-block preimage directly. Together with the basic allocating approach, an improved method is given to balance the complexities of two stages, and hence, obtains the optimal attacks. As a result, we present the best theoretical preimage attacks on Keccak-224 and Keccak-256 that are reduced to 3 and 4 rounds. Moreover, we practically found a (second) preimage for 3-round Keccak-224 with a complexity of $$2^{39.39}$$.
Preimage Attacks on the Round-reduced Keccak with Cross-linear Structures
In this paper, based on the work pioneered by Aumasson and Meier, Dinur et al., and Guo et al., we construct some new delicate structures from the roundreduced versions of Keccakhash function family. The new constructed structures are called cross-linear structures, because linear polynomials appear across in different equations of these structures. And we apply cross-linear structures to do preimage attacks on some instances of the round-reduced Keccak. There are three main contributions in this paper. First, we construct a kind of cross-linear structures by setting the statuses carefully. With these cross-linear structures, guessing the value of one linear polynomial could lead to three linear equations (including the guessed one). Second, for some special cases, e.g. the 3-round Keccakchallenge instance Keccak[r=240, c=160, nr=3], a more special kind of cross-linear structures is constructed, and these structures can be used to obtain seven linear equations (including the guessed) if the values of two linear polynomials are guessed. Third, as applications of the cross-linear structures, we practically found a preimage for the 3-round KeccakChallenge instance Keccak[r=240, c=160, nr=3]. Besides, by constructing similar cross-linear structures, the complexity of the preimage attack on 3-round Keccak-256/SHA3-256/SHAKE256 can be lowered to 2150/2151/2153 operations, while the previous best known result on Keccak-256 is 2192.


Maodong Liao (1)
Yao Sun (3)
Dingkang Wang (1)