International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Thomas Zacharias

Publications

Year
Venue
Title
2020
ASIACRYPT
Crowd Verifiable Zero-Knowledge and End-to-end Verifiable Multiparty Computation 📺
Auditing a secure multiparty computation (MPC) protocol entails the validation of the protocol transcript by a third party that is otherwise untrusted. In this work we introduce the concept of end-to-end verifiable MPC (VMPC), that requires the validation to provide a correctness guarantee even in the setting that all servers, trusted setup primitives and all the client systems utilized by the input-providing users of the MPC protocol are subverted by an adversary. To instantiate VMPC, we introduce a new concept in the setting of zero-knowlegde protocols that we term crowd verifiable zero-knowledge (CVZK). A CVZK protocol enables a prover to convince a set of verifiers about a certain statement, even though each one individually contributes a small amount of entropy for verification and some of them are adversarially controlled. Given CVZK, we present a VMPC protocol that is based on discrete-logarithm related assumptions. At the high level of adversity that VMPC is meant to withstand, it is infeasible to ensure perfect correctness, thus we investigate the classes of functions and verifiability relations that are feasible in our framework, and present a number of possible applications the underlying functions of which can be implemented via VMPC.
2018
ASIACRYPT
A Universally Composable Framework for the Privacy of Email Ecosystems
Email communication is amongst the most prominent online activities, and as such, can put sensitive information at risk. It is thus of high importance that internet email applications are designed in a privacy-aware manner and analyzed under a rigorous threat model. The Snowden revelations (2013) suggest that such a model should feature a global adversary, in light of the observational tools available. Furthermore, the fact that protecting metadata can be of equal importance as protecting the communication context implies that end-to-end encryption may be necessary, but it is not sufficient.With this in mind, we utilize the Universal Composability framework [Canetti, 2001] to introduce an expressive cryptographic model for email “ecosystems” that can formally and precisely capture various well-known privacy notions (unobservability, anonymity, unlinkability, etc.), by parameterizing the amount of leakage an ideal-world adversary (simulator) obtains from the email functionality.Equipped with our framework, we present and analyze the security of two email constructions that follow different directions in terms of the efficiency vs. privacy tradeoff. The first one achieves optimal security (only the online/offline mode of the users is leaked), but it is mainly of theoretical interest; the second one is based on parallel mixing [Golle and Juels, 2004] and is more practical, while it achieves anonymity with respect to users that have similar amount of sending and receiving activity.
2017
PKC
2016
ASIACRYPT
2015
EPRINT
2015
EUROCRYPT

Program Committees

PKC 2020