CryptoDB
Bingsheng Zhang
Publications
Year
Venue
Title
2024
ASIACRYPT
On the Complexity of Cryptographic Groups and Generic Group Models
Abstract
Ever since the seminal work of Diffie and Hellman, cryptographic (cyclic) groups have served as a fundamental building block for constructing cryptographic schemes and protocols. The security of these constructions can often be based on the hardness of (cyclic) group-based computational assumptions. Then, the generic group model (GGM) has been studied as an idealized model (Shoup, EuroCrypt 1997), which justifies the hardness of many (cyclic) group-based assumptions and shows the limits of some group-based cryptosystems. We stress that, the importance of the length of group encoding, either in a concrete group-based construction or assumption, or in the GGM, has not been studied.
In this work, we initiate a systematic study on the complexity of cryptographic groups and generic group models, varying in different lengths of group encodings, and demonstrate evidences that ``the length matters''. More concretely, we have the following results:
-- We show that there is no black-box/relativizing reduction from the CDH-secure groups (i.e., over such groups, the computational Diffie-Hellman assumption holds) with shorter encodings, to the CDH-secure groups with longer encodings, within the same security parameter. More specifically, given any arbitrary longer CDH-secure group, it is impossible to generically shorten the group encoding and obtain a shorter CDH-secure group within the same group order.
-- We show that there is a strict hierarchy of the GGMs with different lengths of encodings. That is, in the framework of indifferentiability, the shorter GGM is strictly stronger than the longer ones, even in the presence of computationally bounded adversaries.
2023
EUROCRYPT
Endemic Oblivious Transfer via Random Oracles, Revisited
Abstract
The notion of Endemic Oblivious Transfer (EOT) was introduced by Masny and Rindal (CCS’19). EOT offers a weaker security guarantee than the conventional random OT; namely, the malicious parties can fix their outputs arbitrarily. The authors presented a 1-round UC-secure EOT protocol under a tailor-made and non-standard assumption, Choose-and-Open DDH, in the RO model.
In this work, we systematically study EOT in the UC/GUC framework. We present a new 1-round UC-secure EOT construction in the RO model under the DDH assumption. Under the GUC framework, we propose the first 1-round EOT construction under the CDH assumption in the Global Restricted Observable RO (GroRO) model proposed by Canetti et al. (CCS’14). We also provide an impossibility result, showing there exist no 1-round GUC-secure EOT protocols in the Global Restricted Programmable RO (GrpRO) model proposed by Camenisch et al. (Eurocrypt’18). Subsequently, we provide the first round-optimal (2-round) EOT protocol with adaptive security under the DDH assumption in the GrpRO model. Finally, we investigate the relations between EOT
and other cryptographic primitives.
As side products, we present the first 2-round GUC-secure commitment in the GroRO model as well as a separation between the GroRO and the GrpRO models, which may be of independent interest.
2022
ASIACRYPT
GUC-Secure Commitments via Random Oracles: New Impossibility and Feasibility
📺
Abstract
In the UC framework, protocols must be subroutine respecting; therefore, shared trusted setup might cause security issues. To address this drawback, Generalized UC (GUC) framework is introduced by Canetti {\em et al.} (TCC 2007).
In this work, we investigate the impossibility and feasibility of GUC-secure commitments using global random oracles (GRO) as the trusted setup. In particular, we show that it is impossible to have a 2-round (1-round committing and 1-round opening) GUC-secure commitment in the global observable RO model by Canetti {\em et al.} (CCS 2014). We then give a new round-optimal GUC-secure commitment that uses only Minicrypt assumptions (i.e. the existence of one-way functions) in the global observable RO model. Furthermore, we also examine the complete picture on round complexity of the GUC-secure commitments in various global RO models.
2020
ASIACRYPT
Crowd Verifiable Zero-Knowledge and End-to-end Verifiable Multiparty Computation
📺
Abstract
Auditing a secure multiparty computation (MPC) protocol
entails the validation of the protocol transcript
by a third party that is otherwise untrusted.
In this work we introduce the concept of end-to-end verifiable
MPC (VMPC), that requires the validation to provide a correctness
guarantee even in the setting that all servers, trusted setup
primitives and all the client systems utilized by the input-providing
users of the MPC protocol are subverted by an adversary.
To instantiate VMPC, we introduce a new concept in the setting of
zero-knowlegde protocols that we term crowd verifiable zero-knowledge
(CVZK). A CVZK protocol enables a prover to convince a set of verifiers
about a certain statement, even though each one individually contributes
a small amount of entropy for verification and some of them are adversarially
controlled. Given CVZK, we present a VMPC protocol that
is based on discrete-logarithm related assumptions.
At the high level of adversity that VMPC is meant to withstand,
it is infeasible to ensure perfect correctness,
thus we investigate the classes of functions and
verifiability relations that are feasible in our framework, and
present a number of possible applications the underlying
functions of which can be implemented via VMPC.
Coauthors
- Foteini Baldimtsi (2)
- Keyu Ji (1)
- Aggelos Kiayias (4)
- Kui Ren (3)
- Xin Wang (1)
- Taiyu Wang (1)
- Thomas Zacharias (4)
- Bingsheng Zhang (7)
- Cong Zhang (1)
- Zhelei Zhou (2)
- Hong-Sheng Zhou (3)