International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Florian Unterstein

Publications

Year
Venue
Title
2021
TCHES
Security and Trust in Open Source Security Tokens 📺
Using passwords for authentication has been proven vulnerable in countless security incidents. Hardware security tokens effectively prevent most password-related security issues and improve security indisputably. However, we would like to highlight that there are new threats from attackers with physical access which need to be discussed. Supply chain adversaries may manipulate devices on a large scale and install backdoors before they even reach end users. In evil maid scenarios, specific devices may even be attacked while already in use. Hence, we thoroughly investigate the security and trustworthiness of seven commercially available open source security tokens, including devices from the two market leaders: SoloKeys and Nitrokey. Unfortunately, we identify and practically verify significant vulnerabilities in all seven examined tokens. Some of them are based on severe, previously undiscovered, vulnerabilities of two major microcontrollers which are used at a large scale in various products. Our findings clearly emphasize the significant threat from supply chain and evil maid scenarios since the attacks are practical and only require moderate attacker efforts. Fortunately, we are able to describe software-based countermeasures as effective improvements to retrofit the examined devices. To improve the security and trustworthiness of future security tokens, we also derive important general design recommendations.
2020
TCHES
Investigating Profiled Side-Channel Attacks Against the DES Key Schedule 📺
Recent publications describe profiled single trace side-channel attacks (SCAs) against the DES key-schedule of a “commercially available security controller”. They report a significant reduction of the average remaining entropy of cryptographic keys after the attack, with surprisingly large, key-dependent variations of attack results, and individual cases with remaining key entropies as low as a few bits. Unfortunately, they leave important questions unanswered: Are the reported wide distributions of results plausible - can this be explained? Are the results device-specific or more generally applicable to other devices? What is the actual impact on the security of 3-key triple DES? We systematically answer those and several other questions by analyzing two commercial security controllers and a general purpose microcontroller. We observe a significant overall reduction and, importantly, also observe a large key-dependent variation in single DES key security levels, i.e. 49.4 bit mean and 0.9 % of keys < 40 bit (first investigated security controller; other results similar). We also observe a small fraction of keys with exceptionally low security levels that can be called weak keys. It is unclear, whether a device’s side-channel security should be assessed based on such rare weak key outliers. We generalize results to other leakage models by attacking the hardware DES accelerator of a general purpose microcontroller exhibiting a different leakage model. A highly simplified leakage simulation also confirms the wide distribution and shows that security levels are predictable to some extent. Through extensive investigations we find that the actual weakness of keys mainly stems from the specific switching noise they cause. Based on our investigations we expect that widely distributed results and weak outliers should be expected for all profiled attacks against (insufficiently protected) key-schedules, regardless of the algorithm and specific implementation. Finally, we describe a sound approach to estimate actual 3-key triple-DES security levels from empirical single DES results and find that the impact on the security of 3-key triple-DES is limited, i.e. 96.1 bit mean and 0.24 % of key-triples < 80 bit for the same security controller.
2020
TCHES
Retrofitting Leakage Resilient Authenticated Encryption to Microcontrollers 📺
The security of Internet of Things (IoT) devices relies on fundamental concepts such as cryptographically protected firmware updates. In this context attackers usually have physical access to a device and therefore side-channel attacks have to be considered. This makes the protection of required cryptographic keys and implementations challenging, especially for commercial off-the-shelf (COTS) microcontrollers that typically have no hardware countermeasures. In this work, we demonstrate how unprotected hardware AES engines of COTS microcontrollers can be efficiently protected against side-channel attacks by constructing a leakage resilient pseudo random function (LR-PRF). Using this side-channel protected building block, we implement a leakage resilient authenticated encryption with associated data (AEAD) scheme that enables secured firmware updates. We use concepts from leakage resilience to retrofit side-channel protection on unprotected hardware AES engines by means of software-only modifications. The LR-PRF construction leverages frequent key changes and low data complexity together with key dependent noise from parallel hardware to protect against side-channel attacks. Contrary to most other protection mechanisms such as time-based hiding, no additional true randomness is required. Our concept relies on parallel S-boxes in the AES hardware implementation, a feature that is fortunately present in many microcontrollers as a measure to increase performance. In a case study, we implement the protected AEAD scheme for two popular ARM Cortex-M microcontrollers with differing parallelism. We evaluate the protection capabilities in realistic IoT attack scenarios, where non-invasive EM probes or power consumption measurements are employed by the attacker. We show that the concept provides the side-channel hardening that is required for the long-term security of IoT devices.
2017
CHES
Your Rails Cannot Hide from Localized EM: How Dual-Rail Logic Fails on FPGAs
Vincent Immler Robert Specht Florian Unterstein
Protecting cryptographic implementations against side-channel attacks is a must to prevent leakage of processed secrets. As a cell-level countermeasure, so called DPA-resistant logic styles have been proposed to prevent a data-dependent power consumption.As most of the DPA-resistant logic is based on dual-rails, properly implementing them is a challenging task on FPGAs which is due to their fixed architecture and missing freedom in the design tools.While previous works show a significant security gain when using such logic on FPGAs, we demonstrate this only holds for power-analysis. In contrast, our attack using high-resolution electromagnetic analysis is able to exploit local characteristics of the placement and routing such that only a marginal security gain remains, therefore creating a severe threat.To further analyze the properties of both attack and implementation, we develop a custom placer to improve the default placement of the analyzed AES S-box. Different cost functions for the placement are tested and evaluated w.r.t. the resulting side-channel resistance on a Spartan-6 FPGA. As a result, we are able to more than double the resistance of the design compared to cases not benefiting from the custom placement.
2015
EPRINT