International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Josep Balasch

Publications

Year
Venue
Title
2025
TCHES
Higher-Order Time Sharing Masking
At CHES 2024, Time Sharing Masking (TSM) was introduced as a novel low-latency masking technique for hardware circuits. TSM offers area and randomness efficiency, as well as glitch-extended PINI security, but it is limited to first-order security. We address this limitation and generalize TSM to higher-order security while maintaining all of TSM’s advantages. Additionally, we propose an area-latency tradeoff. We prove HO-TSM glitch-extended PINI security and successfully evaluate our circuits using formal verification tools. Furthermore, we demonstrate area- and latency-efficient implementations of the AES S-box, which do not exhibit leakage in TVLA on FPGA. Our proposed tradeoff enables a first-order secure implementation of a complete AES-128 encryption core with 92 kGE, 920 random bits per round, and 20 cycles of latency, which does not exhibit leakage in TVLA on FPGA.
2024
TCHES
Time Sharing - A Novel Approach to Low-Latency Masking
We present a novel approach to small area and low-latency first-order masking in hardware. The core idea is to separate the processing of shares in time in order to achieve non-completeness. Resulting circuits are proven first-order glitchextended PINI secure. This means the method can be straightforwardly applied to mask arbitrary functions without constraints which the designer must take care of. Furthermore we show that an implementation can benefit from optimization through EDA tools without sacrificing security. We provide concrete results of several case studies. Our low-latency implementation of a complete PRINCE core shows a 32% area improvement (44% with optimization) over the state-of-the-art. Our PRINCE S-Box passes formal verification with a tool and the complete core on FPGA shows no first-order leakage in TVLA with 100 million traces. Our low-latency implementation of the AES S-Box costs roughly one third (one quarter with optimization) of the area of state-of-the-art implementations. It shows no first-order leakage in TVLA with 250 million traces.
2017
ASIACRYPT
2015
EUROCRYPT
2015
CHES
2012
ASIACRYPT

Service

CHES 2017 Program committee
CHES 2016 Program committee