International Association for Cryptologic Research

International Association
for Cryptologic Research


Moumita Dutta


Succinct Verification of Compressed Sigma Protocols in the Updatable SRS setting
We propose protocols in the Compressed Sigma Protocol framework that achieve a succinct verifier. Towards this, we construct a new inner product argument and cast it in the Compressed Sigma Protocol (CSP) framework as a protocol for opening a committed linear form, achieving logarithmic verification. We then use our succinct-verifier CSP to construct a zero-knowledge argument for circuit satisfiability (under the discrete logarithm assumption in bilinear groups) in the updatable Structured Reference String (SRS) setting that achieves $O(\log n)$ proof size and $O(\log n)$ verification complexity. Our circuit zero-knowledge protocol has concretely better proof/prover/verifier complexity compared to the the state-of-the-art protocol in the updatable setting under the same assumption. Our techniques of achieving verifier-succinctness in the compression framework is of independent interest. We then show a commitment scheme for committing to group elements using a structured commitment key. We construct protocols to open a committed homomorphism on a committed vector with verifier succinctness in the designated verifier setting. This has applications in making the verifier in compressed sigma protocols for bilinear group arithmetic circuits, succinct.