International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Rutchathon Chairattana-Apirom

Publications and invited talks

Year
Venue
Title
2025
CRYPTO
Server-Aided Anonymous Credentials
Rutchathon Chairattana-Apirom Franklin Harding Anna Lysyanskaya Stefano Tessaro
This paper formalizes the notion of server-aided anonymous credentials (SAACs), a new model for anonymous credentials (ACs) where, in the process of showing a credential, the holder is helped by additional auxiliary information generated in an earlier (anonymous) interaction with the issuer. This model enables lightweight instantiations of publicly verifiable and multi-use ACs from pairing-free elliptic curves, which is important for compliance with existing national standards. A recent candidate for the EU Digital Identity Wallet, BBS#, roughly adheres to the SAAC model we have developed; however, it lacks formal security definitions and proofs. In this paper, we provide rigorous definitions of security for SAACs, and show how to realize SAACs from the weaker notion of key-verification ACs (KVACs) and special types of oblivious issuance protocols for zero-knowledge proofs. We instantiate this paradigm to obtain two constructions: one achieves statistical anonymity with unforgeability under the Gap q-SDH assumption, and the other achieves computational anonymity and unforgeability under the DDH assumption.
2025
ASIACRYPT
On the Concrete Security of BBS/BBS+ Signatures
Rutchathon Chairattana-Apirom Stefano Tessaro
BBS/BBS+ signatures are the most promising solution to instantiate practical and lightweight anonymous credentials. They underlie standardization efforts by the W3C and the IRTF. Due to their potential for large scale deployment, it is paramount to understand their concrete security, but a number of questions have been left open by prior works. To this end, the security proofs by Au et al. (SCN '06), Camenisch et al. (TRUST '16), and Tessaro and Zhu (EUROCRYPT '23) show reductions from $q$-SDH in groups of prime order $p$, where $q$ is the number of issued signatures. However, these prior works left the possibility open that BBS/BBS+ is {\em even more secure} than what can be guaranteed by such proofs. Indeed, while the $q$-SDH assumption is subject to an attack that uses $O(\sqrt{p/q})$ group exponentiations (Cheon, EUROCRYPT '06) for several choices of $q$, no attack with a similar complexity appears to affect either of BBS+ and {\em deterministic} BBS, for which the best known attacks amount to recovering the secret key by breaking the discrete logarithm problem. The assumption that this attack is best possible also seemingly justifies the choice of parameters in practice. Our result shows that this expectation is not true. We show new attacks against BBS+ and {\em deterministic} BBS which, after seeing $q$ signatures, allow us to recover the secret key with the same complexity as solving the $\Theta(q)$-Discrete Logarithm problem, which in turn is proportional to $O(\sqrt{p/q})$ for many choices of $q$. Further, we also extend the attack to a reduction showing that the security of BBS+ and deterministic BBS implies the $\Theta(q)$-SDH assumption.
2025
ASIACRYPT
Everlasting Anonymous Rate-Limited Tokens
Rutchathon Chairattana-Apirom Nico Döttling Anna Lysyanskaya Stefano Tessaro
\emph{Anonymous rate-limited tokens} are a special type of credential that can be used to improve the efficiency of privacy-preserving authentication systems like Privacy Pass. In such a scheme, a user obtains a ``token dispenser'' by interacting with an issuer, and the dispenser allows the user to create up to a pre-determined number $k$ of unlinkable and publicly verifiable tokens. Unlinkable means that one should not be able to tell that two tokens originate from the same dispenser, but also they cannot be linked to the interaction that generated the dispenser. Furthermore, we can limit the rate at which these tokens are created by linking each token to a context (e.g., the service we are authenticating to), and imposing a limit $N \leq k$ such that seeing more than $N$ tokens for the same context will reveal the identity of the user. Constructions of such tokens were first given by Camenisch, Hohenberger and Lysyanskaya (EUROCRYPT '05) and Camenisch, Hohenberger, Kohlweiss, Lysyanskaya, and Meyerovich (CCS '06). In this work, we present the first construction of \emph{everlasting} anonymous rate-limited tokens, for which unlinkability holds against computationally \emph{unbounded} adversaries, whereas other security properties (e.g., unforgeability) remain computational. Our construction relies on pairings. While several parameters in our construction unavoidably grow with $k$, the key challenge we resolve is ensuring that the complexity of dispensing a token is \emph{independent} of the parameter $k$. We are motivated here by the goal of providing solutions that are robust to potential future quantum attacks against the anonymity of previously stored tokens. A construction based on post-quantum secure assumptions (e.g., based on lattices) would be rather inefficient---instead, we take a pragmatic approach dispensing with post-quantum security for properties not related to privacy.
2024
CRYPTO
Pairing-Free Blind Signatures from CDH Assumptions
Rutchathon Chairattana-apirom Stefano Tessaro Chenzhi Zhu
We present the first concurrently-secure blind signatures making black-box use of a pairing-free group for which unforgeability, in the random oracle model, can be proved {\em without} relying on the algebraic group model (AGM), thus resolving a long-standing open question. Prior pairing-free blind signatures without AGM proofs have only been proved secure for bounded concurrency, relied on computationally expensive non-black-box use of NIZKs, or had complexity growing with the number of signing sessions due to the use of boosting techniques. Our most efficient constructions rely on the chosen-target CDH assumption and can be seen as blind versions of signatures by Goh and Jarecki (EUROCRYPT '03) and Chevallier-Mames (CRYPTO '05). We also give a less efficient scheme with security based on (plain) CDH. The underlying signing protocols consist of four (in order to achieve regular unforgeability) or five moves (for strong unforgeability). All schemes are proved statistically blind in the random oracle model.
2024
ASIACRYPT
Partially Non-Interactive Two-Round Lattice-Based Threshold Signatures
Rutchathon Chairattana-Apirom Stefano Tessaro Chenzhi Zhu
This paper gives the first lattice-based two-round threshold signature based on standard lattice assumptions for which the first message is independent of the message being signed without relying on fully-homomorphic encryption, and our construction supports arbitrary thresholds. Our construction provides a careful instantiation of a generic threshold signature construction by Tessaro and Zhu (EUROCRYPT '23) based on specific linear hash functions, which in turns can be seen as a generalization of the FROST scheme by Komlo and Goldberg (SAC '20). Our reduction techniques are new in the context of lattice-based cryptography. Also, our scheme does not use any heavy tools, such as NIZKs or homomorphic trapdoor commitments.
2022
CRYPTO
PI-Cut-Choo and Friends: Compact Blind Signatures via Parallel Instance Cut-and-Choose and More 📺
Blind signature schemes are one of the best-studied tools for privacy-preserving authentication. Unfortunately, known constructions of provably secure blind signatures either rely on non-standard hardness assumptions, or require parameters that grow linearly with the number of concurrently issued signatures, or involve prohibitively inefficient general techniques such as general secure two-party computation. Recently, Katz, Loss and Rosenberg (ASIACRYPT'21) gave a technique that, for the security parameter n, transforms blind signature schemes secure for O(log n) concurrent executions of the blind signing protocol into ones that are secure for any poly(n) concurrent executions. This transform has two drawbacks that we eliminate in this paper: 1) the communication complexity of the resulting blind signing protocol grows linearly with the number of signing interactions; 2) the resulting schemes inherit a very loose security bound from the underlying scheme and, as a result, require impractical parameter sizes. In this work, we give an improved transform for obtaining a secure blind signing protocol tolerating any poly(n) concurrent executions from one that is secure for O(log n) concurrent executions. While preserving the advantages of the original transform, the communication complexity of our new transform only grows logarithmically with the number of interactions. Under the CDH and RSA assumptions, we improve on this generic transform in terms of concrete efficiency and give (1) a BLS-based blind signature scheme over a standard-sized group where signatures are of size roughly 3 KB and communication per signature is roughly 120 KB; and (2) an Okamoto-Guillou-Quisquater-based blind signature scheme with signatures and communication of roughly 9 KB and 8 KB, respectively.