International Association for Cryptologic Research

International Association
for Cryptologic Research


Yeongmin Lee


Toward a Fully Secure Authenticated Encryption Scheme From a Pseudorandom Permutation 📺
In this paper, we propose a new block cipher-based authenticated encryption scheme, dubbed the Synthetic Counter with Masking (SCM) mode. SCM follows the NSIV paradigm proposed by Peyrin and Seurin (CRYPTO 2016), where a keyed hash function accepts a nonce N with associated data and a message, yielding an authentication tag T, and then the message is encrypted by a counter-like mode using both T and N. Here we move one step further by encrypting nonces; in the encryption part, the inputs to the block cipher are determined by T, counters, and an encrypted nonce, and all its outputs are also masked by an (additional) encrypted nonce, yielding keystream blocks. As a result, we obtain, for the first time, a block cipher-based authenticated encryption scheme of rate 1/2 that provides n-bit security with respect to the query complexity (ignoring the influence of message length) in the nonce-respecting setting, and at the same time guarantees graceful security degradation in the faulty nonce model, when the underlying n-bit block cipher is modeled as a secure pseudorandom permutation. Seen as a slight variant of GCM-SIV, SCM is also parallelizable and inverse-free, and its performance is still comparable to GCM-SIV.
Improved Security Analysis for Nonce-based Enhanced Hash-then-Mask MACs 📺
In this paper, we prove that the nonce-based enhanced hash-then-mask MAC (nEHtM) is secure up to 2^{3n/4} MAC queries and 2^n verification queries (ignoring logarithmic factors) as long as the number of faulty queries \mu is below 2^{3n/8}, significantly improving the previous bound by Dutta et al. Even when \mu goes beyond 2^{3n/8}, nEHtM enjoys graceful degradation of security. The second result is to prove the security of PRF-based nEHtM; when nEHtM is based on an n-to-s bit random function for a fixed size s such that 1 <= s <= n, it is proved to be secure up to any number of MAC queries and 2^s verification queries, if (1) s = n and \mu < 2^{n/2} or (2) n/2 < s < 2^{n-s} and \mu < max{2^{s/2}, 2^{n-s}}, or (3) s <= n/2 and \mu < 2^{n/2}. This result leads to the security proof of truncated nEHtM that returns only s bits of the original tag since a truncated permutation can be seen as a pseudorandom function. In particular, when s <= 2n/3, the truncated nEHtM is secure up to 2^{n - s/2} MAC queries and 2^s verification queries as long as \mu < min{2^{n/2}, 2^{n-s}}. For example, when s = n/2 (resp. s = n/4), the truncated nEHtM is secure up to 2^{3n/4} (resp. 2^{7n/8}) MAC queries. So truncation might provide better provable security than the original nEHtM with respect to the number of MAC queries.
Forking Tweakable Even-Mansour Ciphers 📺
Hwigyeom Kim Yeongmin Lee Jooyoung Lee
A forkcipher is a keyed, tweakable function mapping an n-bit input to a 2nbit output, which is equivalent to concatenating two outputs from two permutations. A forkcipher can be a useful primitive to design authenticated encryption schemes for short messages. A forkcipher is typically designed within the iterate-fork-iterate (IFI) paradigm, while the provable security of such a construction has not been widely explored.In this paper, we propose a method of constructing a forkcipher using public permutations as its building primitives. It can be seen as applying the IFI paradigm to the tweakable Even-Mansour ciphers. So our construction is dubbed the forked tweakable Even-Mansour (FTEM) cipher. Our main result is to prove that a (1, 1)-round FTEM cipher (applying a single-round TEM to a plaintext, followed by two independent copies of a single-round TEM) is secure up to 2 2n/3 queries in the ideal permutation model.