International Association for Cryptologic Research

International Association
for Cryptologic Research


Matthias J. Kannwischer

Affiliation: Radboud University, Nijmegen, The Netherlands


NTT Multiplication for NTT-unfriendly Rings: New Speed Records for Saber and NTRU on Cortex-M4 and AVX2
In this paper, we show how multiplication for polynomial rings used in the NIST PQC finalists Saber and NTRU can be efficiently implemented using the Number-theoretic transform (NTT). We obtain superior performance compared to the previous state of the art implementations using Toom–Cook multiplication on both NIST’s primary software optimization targets AVX2 and Cortex-M4. Interestingly, these two platforms require different approaches: On the Cortex-M4, we use 32-bit NTT-based polynomial multiplication, while on Intel we use two 16-bit NTT-based polynomial multiplications and combine the products using the Chinese Remainder Theorem (CRT).For Saber, the performance gain is particularly pronounced. On Cortex-M4, the Saber NTT-based matrix-vector multiplication is 61% faster than the Toom–Cook multiplication resulting in 22% fewer cycles for Saber encapsulation. For NTRU, the speed-up is less impressive, but still NTT-based multiplication performs better than Toom–Cook for all parameter sets on Cortex-M4. The NTT-based polynomial multiplication for NTRU-HRSS is 10% faster than Toom–Cook which results in a 6% cost reduction for encapsulation. On AVX2, we obtain speed-ups for three out of four NTRU parameter sets.As a further illustration, we also include code for AVX2 and Cortex-M4 for the Chinese Association for Cryptologic Research competition award winner LAC (also a NIST round 2 candidate) which outperforms existing code.
Single-Trace Attacks on Keccak 📺
Matthias J. Kannwischer Peter Pessl Robert Primas
Since its selection as the winner of the SHA-3 competition, Keccak, with all its variants, has found a large number of applications. It is, for instance, a common building block in schemes submitted to NIST’s post-quantum cryptography project. In many of these applications, Keccak processes ephemeral secrets. In such a setting, side-channel adversaries are limited to a single observation, meaning that differential attacks are inherently prevented. If, however, such a single trace of Keccak can already be sufficient for key recovery has so far been unknown. In this paper, we change the above by presenting the first single-trace attack targeting Keccak. Our method is based on soft-analytical side-channel attacks and, thus, combines template matching with message passing in a graphical model of the attacked algorithm. As a straight-forward model of Keccak does not yield satisfactory results, we describe several optimizations for the modeling and the message-passing algorithm. Their combination allows attaining high attack performance in terms of both success rate as well as computational runtime. We evaluate our attack assuming generic software (microcontroller) targets and thus use simulations in the generic noisy Hamming-weight leakage model. Hence, we assume relatively modest profiling capabilities of the adversary. Nonetheless, the attack can reliably recover secrets in a large number of evaluated scenarios at realistic noise levels. Consequently, we demonstrate the need for countermeasures even in settings where DPA is not a threat.
Compact Dilithium Implementations on Cortex-M3 and Cortex-M4
Denisa O. C. Greconici Matthias J. Kannwischer Daan Sprenkels
We present implementations of the lattice-based digital signature scheme Dilithium for ARM Cortex-M3 and ARM Cortex-M4. Dilithium is one of the three signature finalists of the NIST post-quantum cryptography competition. As our Cortex-M4 target, we use the popular STM32F407-DISCOVERY development board. Compared to the previous speed records on the Cortex-M4 by Ravi, Gupta, Chattopadhyay, and Bhasin we speed up the key operations NTT and NTT−1 by 20% which together with other optimizations results in speedups of 7%, 15%, and 9% for Dilithium3 key generation, signing, and verification respectively. We also present the first constant-time Dilithium implementation on the Cortex-M3 and use the Arduino Due for benchmarks. For Dilithium3, we achieve on average 2 562 kilocycles for key generation, 10 667 kilocycles for signing, and 2 321 kilocycles for verification.Additionally, we present stack consumption optimizations applying to both our Cortex- M3 and Cortex-M4 implementation. Due to the iterative nature of the Dilithium signing algorithm, there is no optimal way to achieve the best speed and lowest stack consumption at the same time. We present three different strategies for the signing procedure which allow trading more stack and flash memory for faster speed or viceversa. Our implementation of Dilithium3 with the smallest memory footprint uses less than 12kB. As an additional output of this work, we present the first Cortex-M3 implementations of the key-encapsulation schemes NewHope and Kyber.