International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Markus Schofnegger

Publications

Year
Venue
Title
2020
EUROCRYPT
On a Generalization of Substitution-Permutation Networks: The HADES Design Strategy 📺
Keyed and unkeyed cryptographic permutations often iterate simple round functions. Substitution-permutation networks (SPNs) are an approach that is popular since the mid 1990s. One of the new directions in the design of these round functions is to reduce the substitution (S-Box) layer from a full one to a partial one, uniformly distributed over all the rounds. LowMC and Zorro are examples of this approach. A relevant freedom in the design space is to allow for a highly non-uniform distribution of S-Boxes. However, choosing rounds that are so different from each other is very rarely done, as it makes security analysis and implementation much harder. We develop the design strategy HADES and an analysis framework for it, which despite this increased complexity allows for security arguments against many classes of attacks, similar to earlier simpler SPNs. The framework builds upon the wide trail design strategy, and it additionally allows for security arguments against algebraic attacks, which are much more of a concern when algebraically simple S-Boxes are used. Subsequently, this is put into practice by concrete instances and benchmarks for a use case that generally benefits from a smaller number of S-Boxes and showcases the diversity of design options we support: A candidate cipher natively working with objects in GF(p), for securing data transfers with distributed databases using secure multiparty computation (MPC). Compared to the currently fastest design MiMC, we observe significant improvements in online bandwidth requirements and throughput with a simultaneous reduction of preprocessing effort, while having a comparable online latency.
2019
ASIACRYPT
Algebraic Cryptanalysis of STARK-Friendly Designs: Application to MARVELlous and MiMC
The block cipher Jarvis and the hash function Friday, both members of the MARVELlous family of cryptographic primitives, are among the first proposed solutions to the problem of designing symmetric-key algorithms suitable for transparent, post-quantum secure zero-knowledge proof systems such as ZK-STARKs. In this paper we describe an algebraic cryptanalysis of Jarvis and Friday and show that the proposed number of rounds is not sufficient to provide adequate security. In Jarvis, the round function is obtained by combining a finite field inversion, a full-degree affine permutation polynomial and a key addition. Yet we show that even though the high degree of the affine polynomial may prevent some algebraic attacks (as claimed by the designers), the particular algebraic properties of the round function make both Jarvis and Friday vulnerable to Gröbner basis attacks. We also consider MiMC, a block cipher similar in structure to Jarvis. However, this cipher proves to be resistant against our proposed attack strategy. Still, our successful cryptanalysis of Jarvis and Friday does illustrate that block cipher designs for “algebraic platforms” such as STARKs, FHE or MPC may be particularly vulnerable to algebraic attacks.