International Association for Cryptologic Research

International Association
for Cryptologic Research


Yaobin Shen

Affiliation: Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai


Improved Security Bounds for Generalized Feistel Networks 📺
Yaobin Shen Chun Guo Lei Wang
We revisit the security of various generalized Feistel networks. Concretely, for unbalanced, alternating, type-1, type-2, and type-3 Feistel networks built from random functions, we substantially improve the coupling analyzes of Hoang and Rogaway (CRYPTO 2010). For a tweakable blockcipher-based generalized Feistelnetwork proposed by Coron et al. (TCC 2010), we present a coupling analysis and for the first time show that with enough rounds, it achieves 2n-bit security, and this provides highly secure, double-length tweakable blockciphers.
Security Analysis of NIST CTR-DRBG 📺
Viet Tung Hoang Yaobin Shen
We study the security of CTR-DRBG, one of NIST’s recommended Pseudorandom Number Generator (PRNG) designs. Recently, Woodage and Shumow (Eurocrypt’ 19), and then Cohney et al. (S&P’ 20) point out some potential vulnerabilities in both NIST specification and common implementations of CTR-DRBG. While these researchers do suggest counter-measures, the security of the patched CTR-DRBG is still questionable. Our work fills this gap, proving that CTR-DRBG satisfies the robustness notion of Dodis et al. (CCS’13), the standard security goal for PRNGs.
On Beyond-Birthday-Bound Security: Revisiting the Development of ISO/IEC 9797-1 MACs 📺
Yaobin Shen Lei Wang
ISO/IEC 9797-1 is an international standard for block-cipher-based Message Authentication Code (MAC). The current version ISO/IEC 9797-1:2011 specifies six single-pass CBC-like MAC structures that are capped at the birthday bound security. For a higher security that is beyond-birthday bound, it recommends to use the concatenation combiner of two single-pass MACs. In this paper, we reveal the invalidity of the suggestion, by presenting a birthday bound forgery attack on the concatenation combiner, which is essentially based on Joux’s multi-collision. Notably, our new forgery attack for the concatenation of two MAC Algorithm 1 with padding scheme 2 only requires 3 queries. Moreover, we look for patches by revisiting the development of ISO/IEC 9797-1 with respect to the beyond-birthday bound security. More specifically, we evaluate the XOR combiner of single-pass CBC-like MACs, which was used in previous version of ISO/IEC 9797-1.


Chun Guo (1)
Viet Tung Hoang (1)
Lei Wang (2)