International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Puwen Wei

Publications

Year
Venue
Title
2019
PKC
Identity-Based Broadcast Encryption with Efficient Revocation
Aijun Ge Puwen Wei
Identity-based broadcast encryption (IBBE) is an effective method to protect the data security and privacy in multi-receiver scenarios, which can make broadcast encryption more practical. This paper further expands the study of scalable revocation methodology in the setting of IBBE, where a key authority releases a key update material periodically in such a way that only non-revoked users can update their decryption keys. Following the binary tree data structure approach, a concrete instantiation of revocable IBBE scheme is proposed using asymmetric pairings of prime order bilinear groups. Moreover, this scheme can withstand decryption key exposure, which is proven to be semi-adaptively secure under chosen plaintext attacks in the standard model by reduction to static complexity assumptions. In particular, the proposed scheme is very efficient both in terms of computation costs and communication bandwidth, as the ciphertext size is constant, regardless of the number of recipients. To demonstrate the practicality, it is further implemented in Charm, a framework for rapid prototyping of cryptographic primitives.
2018
ASIACRYPT
Security of the Blockchain Against Long Delay Attack
The consensus protocol underlying Bitcoin (the blockchain) works remarkably well in practice. However proving its security in a formal setting has been an elusive goal. A recent analytical result by Pass, Seeman and shelat indicates that an idealized blockchain is indeed secure against attacks in an asynchronous network where messages are maliciously delayed by at most $$\varDelta \ll 1/np$$, with n being the number of miners and p the mining hardness. This paper improves upon the result by showing that if appropriate inconsistency tolerance is allowed the blockchain can withstand even more powerful external attacks in the honest miner setting. Specifically we prove that the blockchain is secure against long delay attacks with $$\varDelta \ge 1/np$$ in an asynchronous network.

Coauthors

Aijun Ge (1)
Quan Yuan (1)
Yuliang Zheng (1)