International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Daniel Rausch

Publications

Year
Venue
Title
2020
JOFC
Joint State Composition Theorems for Public-Key Encryption and Digital Signature Functionalities with Local Computation
In frameworks for universal composability, complex protocols can be built from sub-protocols in a modular way using composition theorems. However, as first pointed out and studied by Canetti and Rabin, this modular approach often leads to impractical implementations. For example, when using a functionality for digital signatures within a more complex protocol, parties have to generate new verification and signing keys for every session of the protocol. This motivates to generalize composition theorems to so-called joint state (composition) theorems, where different copies of a functionality may share some state, e.g., the same verification and signing keys. In this paper, we present a joint state theorem which is more general than the original theorem of Canetti and Rabin, for which several problems and limitations are pointed out. We apply our theorem to obtain joint state realizations for three functionalities: public-key encryption, replayable public-key encryption, and digital signatures. Unlike most other formulations, our functionalities model that ciphertexts and signatures are computed locally, rather than being provided by the adversary. To obtain the joint state realizations, the functionalities have to be designed carefully. Other formulations proposed in the literature are shown to be unsuitable. Our work is based on the IITM model. Our definitions and results demonstrate the expressivity and simplicity of this model. For example, unlike Canetti’s UC model, in the IITM model no explicit joint state operator needs to be defined and the joint state theorem follows immediately from the composition theorem in the IITM model.
2020
JOFC
The IITM Model: A Simple and Expressive Model for Universal Composability
The universal composability paradigm allows for the modular design and analysis of cryptographic protocols. It has been widely and successfully used in cryptography. However, devising a coherent yet simple and expressive model for universal composability is, as the history of such models shows, highly non-trivial. For example, several partly severe problems have been pointed out in the literature for the UC model. In this work, we propose a coherent model for universal composability, called the IITM model (“Inexhaustible Interactive Turing Machine”). A main feature of the model is that it is stated without a priori fixing irrelevant details, such as a specific way of addressing of machines by session and party identifiers, a specific modeling of corruption, or a specific protocol hierarchy. In addition, we employ a very general notion of runtime. All reasonable protocols and ideal functionalities should be expressible based on this notion in a direct and natural way, and without tweaks, such as (artificial) padding of messages or (artificially) adding extra messages. Not least because of these features, the model is simple and expressive. Also the general results that we prove, such as composition theorems, hold independently of how such details are fixed for concrete applications. Being inspired by other models for universal composability, in particular the UC model and because of the flexibility and expressivity of the IITM model, conceptually, results formulated in these models directly carry over to the IITM model.
2019
ASIACRYPT
iUC: Flexible Universal Composability Made Simple
Proving the security of complex protocols is a crucial and very challenging task. A widely used approach for reasoning about such protocols in a modular way is universal composability. A perfect model for universal composability should provide a sound basis for formal proofs and be very flexible in order to allow for modeling a multitude of different protocols. It should also be easy to use, including useful design conventions for repetitive modeling aspects, such as corruption, parties, sessions, and subroutine relationships, such that protocol designers can focus on the core logic of their protocols.While many models for universal composability exist, including the UC, GNUC, and IITM models, none of them has achieved this ideal goal yet. As a result, protocols cannot be modeled faithfully and/or using these models is a burden rather than a help, often even leading to underspecified protocols and formally incorrect proofs.Given this dire state of affairs, the goal of this work is to provide a framework for universal composability which combines soundness, flexibility, and usability in an unmatched way. Developing such a security framework is a very difficult and delicate task, as the long history of frameworks for universal composability shows.We build our framework, called iUC, on top of the IITM model, which already provides soundness and flexibility while lacking sufficient usability. At the core of iUC is a single simple template for specifying essentially arbitrary protocols in a convenient, formally precise, and flexible way. We illustrate the main features of our framework with example functionalities and realizations.
2016
ASIACRYPT