International Association for Cryptologic Research

International Association
for Cryptologic Research


Leon Groot Bruinderink


Differential Fault Attacks on Deterministic Lattice Signatures
Leon Groot Bruinderink Peter Pessl
In this paper, we extend the applicability of differential fault attacks to lattice-based cryptography. We show how two deterministic lattice-based signature schemes, Dilithium and qTESLA, are vulnerable to such attacks. In particular, we demonstrate that single random faults can result in a nonce-reuse scenario which allows key recovery. We also expand this to fault-induced partial nonce-reuse attacks, which do not corrupt the validity of the computed signatures and thus are harder to detect.Using linear algebra and lattice-basis reduction techniques, an attacker can extract one of the secret key elements after a successful fault injection. Some other parts of the key cannot be recovered, but we show that a tweaked signature algorithm can still successfully sign any message. We provide experimental verification of our attacks by performing clock glitching on an ARM Cortex-M4 microcontroller. In particular, we show that up to 65.2% of the execution time of Dilithium is vulnerable to an unprofiled attack, where a random fault is injected anywhere during the signing procedure and still leads to a successful key-recovery.
Sliding Right into Disaster: Left-to-Right Sliding Windows Leak
It is well known that constant-time implementations of modular exponentiation cannot use sliding windows. However, software libraries such as Libgcrypt, used by GnuPG, continue to use sliding windows. It is widely believed that, even if the complete pattern of squarings and multiplications is observed through a side-channel attack, the number of exponent bits leaked is not sufficient to carry out a full key-recovery attack against RSA. Specifically, 4-bit sliding windows leak only 40% of the bits, and 5-bit sliding windows leak only 33% of the bits.In this paper we demonstrate a complete break of RSA-1024 as implemented in Libgcrypt. Our attack makes essential use of the fact that Libgcrypt uses the left-to-right method for computing the sliding-window expansion. We show for the first time that the direction of the encoding matters: the pattern of squarings and multiplications in left-to-right sliding windows leaks significantly more information about the exponent than right-to-left. We show how to extend the Heninger-Shacham algorithm for partial key reconstruction to make use of this information and obtain a very efficient full key recovery for RSA-1024. For RSA-2048 our attack is efficient for 13% of keys.