International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Pascal Sasdrich

Affiliation: Ruhr-Universität Bochum

Publications

Year
Venue
Title
2020
TCHES
Low-Latency Hardware Masking with Application to AES 📺
During the past two decades there has been a great deal of research published on masked hardware implementations of AES and other cryptographic primitives. Unfortunately, many hardware masking techniques can lead to increased latency compared to unprotected circuits for algorithms such as AES, due to the high-degree of nonlinear functions in their designs. In this paper, we present a hardware masking technique which does not increase the latency for such algorithms. It is based on the LUT-based Masked Dual-Rail with Pre-charge Logic (LMDPL) technique presented at CHES 2014. First, we show 1-glitch extended strong noninterference of a nonlinear LMDPL gadget under the 1-glitch extended probing model. We then use this knowledge to design an AES implementation which computes a full AES-128 operation in 10 cycles and a full AES-256 operation in 14 cycles. We perform practical side-channel analysis of our implementation using the Test Vector Leakage Assessment (TVLA) methodology and analyze univariate as well as bivariate t-statistics to demonstrate its DPA resistance level.
2020
TOSC
SKINNY-AEAD and SKINNY-Hash 📺
We present the family of authenticated encryption schemes SKINNY-AEAD and the family of hashing schemes SKINNY-Hash. All of the schemes employ a member of the SKINNY family of tweakable block ciphers, which was presented at CRYPTO 2016, as the underlying primitive. In particular, for authenticated encryption, we show how to instantiate members of SKINNY in the Deoxys-I-like ΘCB3 framework to fulfill the submission requirements of the NIST lightweight cryptography standardization process. For hashing, we use SKINNY to build a function with larger internal state and employ it in a sponge construction. To highlight the extensive amount of third-party analysis that SKINNY obtained since its publication, we briefly survey the existing cryptanalysis results for SKINNY-128-256 and SKINNY-128-384 as of February 2020. In the last part of the paper, we provide a variety of ASIC implementations of our schemes and propose new simple SKINNY-AEAD and SKINNY-Hash variants with a reduced number of rounds while maintaining a very comfortable security margin. https://csrc.nist.gov/Projects/Lightweight-Cryptography
2020
ASIACRYPT
SILVER - Statistical Independence and Leakage Verification 📺
David Knichel Pascal Sasdrich Amir Moradi
Implementing cryptographic functions securely in the presence of physical adversaries is still a challenge although a lion's share of research in the physical security domain has been put in development of countermeasures. Among several protection schemes, masking has absorbed the most attention of research in both academic and industrial communities, due to its theoretical foundation allowing to provide proofs or model the achieved security level. In return, masking schemes are difdicult to implement as the implementation process often is manual, complex, and error-prone. This motivated the need for formal verification tools that allow the designers and engineers to analyze and verify the designs before manufacturing. In this work, we present a new framework to analyze and verify masked implementations against various security notions using different security models as reference. In particular, our framework { which directly processes the resulting gate-level netlist of a hardware synthesis { particularly relies on Reduced Ordered Binary Decision Diagrams (ROBDDs) and the concept of statistical independence of probability distributions. Compared to existing tools, our framework captivates due to its simplicity, accuracy, and functionality while still having a reasonable efficiency for many applications and common use-cases.
2017
CHES
Bit-Sliding: A Generic Technique for Bit-Serial Implementations of SPN-based Primitives
Area minimization is one of the main efficiency criterion for lightweight encryption primitives. While reducing the implementation data path is a natural strategy for achieving this goal, Substitution-Permutation Network (SPN) ciphers are usually hard to implement in a bit-serial way (1-bit data path). More generally, this is hard for any data path smaller than its Sbox size, since many scan flip-flops would be required for storage, which are more area-expensive than regular flip-flops.In this article, we propose the first strategy to obtain extremely small bit-serial ASIC implementations of SPN primitives. Our technique, which we call bit-sliding, is generic and offers many new interesting implementation trade-offs. It manages to minimize the area by reducing the data path to a single bit, while avoiding the use of many scan flip-flops.Following this general architecture, we could obtain the first bit-serial and the smallest implementation of AES-128 to date (1560 GE for encryption only, and 1738 GE for encryption and decryption with IBM 130 nm standard-cell library), greatly improving over the smallest known implementations (about 30% decrease), making AES-128 competitive to many ciphers specifically designed for lightweight cryptography. To exhibit the generality of our strategy, we also applied it to the PRESENT and SKINNY block ciphers, again offering the smallest implementations of these ciphers thus far, reaching an area as low as 1065 GE for a 64-bit block 128-bit key cipher. It is also to be noted that our bit-sliding seems to obtain very good power consumption figures, which makes this implementation strategy a good candidate for passive RFID tags.
2016
CRYPTO
2016
FSE
2015
EPRINT
2015
EPRINT
2015
EPRINT