International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Eric Peeters

Affiliation: Texas Instruments Inc.

Publications

Year
Venue
Title
2007
EPRINT
Towards Security Limits in Side-Channel Attacks
In this paper, we consider a recently introduced framework that investigates physically observable implementations from a theoretical point of view. The model allows quantifying the effect of practically relevant leakage functions with a combination of security and information theoretic metrics. More specifically, we apply our evaluation methodology to an exemplary block cipher. We first consider a Hamming weight leakage function and evaluate the efficiency of two commonly investigated countermeasures, namely noise addition and masking. Then, we show that the proposed methodology allows capturing certain non-trivial intuitions, e.g. about the respective effectiveness of these countermeasures. Finally, we justify the need of combined metrics for the evaluation, comparison and understanding of side-channel attacks.
2006
CHES
2006
CHES
2005
CHES
2004
CHES
2004
EPRINT
Parallel FPGA Implementation of RSA with Residue Number Systems - Can side-channel threats be avoided? - Extended version
In this paper, we present a new parallel architecture to avoid side-channel analyses such as: timing attack, simple/differential power analysis, fault induction attack and simple/differential electromagnetic analysis. We use a Montgomery Multiplication based on Residue Number Systems. Thanks to RNS, we develop a design able to perform an RSA signature in parallel on a set of identical and independent coprocessors. Of independent interest, we propose a new DPA countermeasure in the framework of RNS. It is only (slightly) memory consuming (1.5 KBytes). Finally, we synthesized our new architecture on FPGA and it presents promising performance results. Even if our aim is to sketch a secure architecture, the RSA signature is performed in less than 160 ms, with competitive hardware resources. To our knowledge, this is the first proposal of an architecture counteracting electromagnetic analysis apart from hardware countermeasures reducing electromagnetic radiations.

Program Committees

CHES 2015
CHES 2014
CHES 2010