International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Claudio Soriente

Publications

Year
Venue
Title
2015
EPRINT
2015
EPRINT
2014
EPRINT
2009
PKC
2008
EPRINT
Playing Hide-and-Seek with a Focused Mobile Adversary: Maximizing Data Survival in Unattended Sensor Networks
Some sensor network settings involve disconnected or unattended operation with periodic visits by a mobile sink. An unattended sensor network operating in a hostile environment can collect data that represents a high-value target for the adversary. Since an unattended sensor can not immediately off-load sensed data to a safe external entity (such as a sink), the adversary can easily mount a focused attack aiming to erase or modify target data. To maximize chances of data survival, sensors must collaboratively attempt to mislead the adversary and hide the location, the origin and the contents of collected data. In this paper, we focus on applications of well-known security techniques to maximize chances of data survival in unattended sensor networks, where sensed data can not be off-loaded to a sink in real time. Our investigation yields some interesting insights and surprising results. The highlights of our work are: (1) thorough exploration of the data survival challenge, (2) exploration of the design space for possible solutions, (3) construction of several practical and effective techniques, and (4) their evaluation.
2008
EPRINT
Maximizing data survival in Unattended Wireless Sensor Networks against a focused mobile adversary
Some sensor network settings involve disconnected or unattended operation with periodic visits by a mobile sink. An unattended sensor network operating in a hostile environment can collect data that represents a high-value target for the adversary. Since an unattended sensor can not immediately off-load sensed data to a safe external entity (such as a sink), the adversary can easily mount a focused attack aiming to erase or modify target data. To maximize chances of data survival, sensors must collaboratively attempt to mislead the adversary and hide the location, the origin and the contents of collected data. In this paper, we focus on applications of well-known security techniques to maximize chances of data survival in unattended sensor networks, where sensed data can not be off-loaded to a sink in real time. Our investigation yields some interesting insights and surprising results. The highlights of our work are: (1) thorough exploration of the data survival challenge, (2) exploration of the design space for possible solutions, (3) construction of several practical and effective techniques, and (4) their evaluation.
2008
EPRINT
An Accumulator Based on Bilinear Maps and Efficient Revocation for Anonymous Credentials
Jan Camenisch Markulf Kohlweiss Claudio Soriente
The success of electronic authentication systems, be it e-ID card systems or Internet authentication systems such as CardSpace, highly depends on the provided level of user-privacy. Thereby, an important requirement is an efficient means for revocation of the authentication credentials. In this paper we consider the problem of revocation for certificate-based privacy-protecting authentication systems. To date, the most efficient solutions for revocation for such systems are based on cryptographic accumulators. Here, an accumulate of all currently valid certificates is published regularly and each user holds a {\em witness} enabling her to prove the validity of her (anonymous) credential while retaining anonymity. Unfortunately, the users' witnesses must be updated at least each time a credential is revoked. For the know solutions, these updates are computationally very expensive for users and/or certificate issuers which is very problematic as revocation is a frequent event as practice shows. In this paper, we propose a new dynamic accumulator scheme based on bilinear maps and show how to apply it to the problem of revocation of anonymous credentials. In the resulting scheme, proving a credential's validity and updating witnesses both come at (virtually) no cost for credential owners and verifiers. In particular, updating a witness requires the issuer to do only one multiplication per addition or revocation of a credential and can also be delegated to untrusted entities from which a user could just retrieve the updated witness. We believe that thereby we provide the first authentication system offering privacy protection suitable for implementation with electronic tokens such as eID cards or drivers' licenses.
2007
EPRINT
HAPADEP: Human Asisted Pure Audio Device Pairing
Claudio Soriente Gene Tsudik Ersin Uzun
The number and diversity of electronic gadgets has been steadily increasing and they are becoming indispensable to more and more professionals and non-professionals alike. At the same time, there has been fairly little progress in secure pairing of such devices. The pairing challenge revolves around establishing on-the-fly secure communication without any trusted (on- or off-line) third parties between devices that have no prior association. The main security issue is the danger of so-called Man-in-the-Middle (MiTM) attacks, whereby an adversary impersonates one of the devices by inserting itself into the pairing protocol. One basic approach to countering these MiTM attacks is to involve the user in the pairing process. Therein lies the usability challenge since it is natural to minimize user burden. Previous research yielded some interesting secure pairing techniques, some of which ask too much of the human user, while others assume availability of specialized equipment (e.g., wires, photo or video cameras) on devices. Furthermore, all prior methods assumed the existence of a common digital (humanimperceptible) communication medium, such as Infrared, 802.11 or Bluetooth. In this paper we introduce a very simple technique called HAPADEP (Human-Assisted Pure Audio Device Pairing). It places very little burden on the human user and requires no common means of electronic communication. Instead, HAPADEP uses the audio channel to exchange both data and verification information among devices. It makes secure pairing possible even if devices are equipped only with a microphone and a speaker. Despite its simplicity, a number of interesting issues arise in the design of HAPADEP. We discuss design and implementation highlights as well as usability features and limitations.
2007
EPRINT
BEDA: Button-Enabled Device Pairing
Claudio Soriente Gene Tsudik Ersin Uzun
Secure initial pairing of electronic gadgets is a challenging problem, especially considering lack of any common security infrastructure. The main security issue is the threat of so-called Man-in-the-Middle (MiTM) attacks, whereby an attacker inserts itself into the pairing protocol by impersonating one of the legitimate parties. A number of interesting techniques have been proposed, all of which involve the user in the pairing process. However, they are inapplicable to many common scenarios where devices to-be-paired do not possess required interfaces, such as displays, speakers, cameras or microphones. In this paper, we introduce BEDA (Button-Enabled Device Association), a protocol suite for secure pairing devices with minimal user interfaces. The most common and minimal interface available on wide variety of devices is a single button. BEDA protocols can accommodate pairing scenarios where one (or even both) devices only have a single button as their "user interface". Our usability study demonstrates that BEDA protocols involve very little human burden and are quite suitable for ordinary users.