International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Marcin Rogawski

Publications

Year
Venue
Title
2014
EPRINT
2014
EPRINT
2014
CHES
2011
CHES
2010
EPRINT
Comparing Hardware Performance of Fourteen Round Two SHA-3 Candidates Using FPGAs
Ekawat Homsirikamol Marcin Rogawski Kris Gaj
Performance in hardware has been demonstrated to be an important factor in the evaluation of candidates for cryptographic standards. Up to now, no consensus exists on how such an evaluation should be performed in order to make it fair, transparent, practical, and acceptable for the majority of the cryptographic community. In this report, we formulate a proposal for a fair and comprehensive evaluation methodology, and apply it to the comparison of hardware performance of 14 Round~2 SHA-3 candidates. The most important aspects of our methodology include the definition of clear performance metrics, the development of a uniform and practical interface, generation of multiple sets of results for several representative FPGA families from two major vendors, and the application of a simple procedure to convert multiple sets of results into a single ranking. The VHDL codes for 256 and 512-bit variants of all 14 SHA-3 Round 2 candidates and the old standard SHA-2 have been developed and thoroughly verified. These codes have been then used to evaluate the relative performance of all aforementioned algorithms using seven modern families of Field Programmable Gate Arrays (FPGAs) from two major vendors, Xilinx and Altera. All algorithms have been evaluated using four performance measures: the throughput to area ratio, throughput, area, and the execution time for short messages. Based on these results, the 14 Round 2 SHA-3 candidates have been divided into several groups depending on their overall performance in FPGAs.
2010
CHES
2003
EPRINT
Analysis of Implementation Hierocrypt-3 algorithm (and its comparison to Camellia algorithm) using ALTERA devices
Marcin Rogawski
Alghoritms: HIEROCRYPT-3, CAMELLIA and ANUBIS, GRAND CRU, NOEKEON, NUSH, Q, RC6, SAFER++128, SC2000, SHACAL were requested for the submission of block ciphers (high level block cipher) to NESSIE (New European Schemes for Signatures, Integrity, and Encryption) project. The main purpose of this project was to put forward a portfolio of strong cryptographic primitives of various types. The NESSIE project was a three year long project and has been divided into two phases. The first was finished in June 2001r. CAMELLIA, RC6, SAFER++128 and SHACAL were accepted for the second phase of the evaluation process. HIEROCRYPT-3 had key schedule problems, and there were attacks for up to 3,5 rounds out of 6, at least hardware implementations of this cipher were extremely slow. HIEROCRYPT-3 was not selected to Phase II. CAMELLIA was selected as an algorithm suggested for future standard. In the paper we present the hardware implementations these two algorithms with 128-bit blocks and 128-bit keys, using ALTERA devices and their comparisons.