International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Xiaofeng Chen

Publications

Year
Venue
Title
2021
ASIACRYPT
Lattice-Based Group Encryption with Full Dynamicity and Message Filtering Policy
Group encryption (GE) is a fundamental privacy-preserving primitive analog of group signatures, which allows users to decrypt specific ciphertexts while hiding themselves within a crowd. Since its first birth, numerous constructions have been proposed, among which the schemes separately constructed by Libert et al. (Asiacrypt 2016) over lattices and by Nguyen et al. (PKC 2021) over coding theory are postquantum secure. Though the last scheme, at the first time, achieved the full dynamicity (allowing group users to join or leave the group in their ease) and message filtering policy, which greatly improved the state-of-affairs of GE systems, its practical applications are still limited due to the rather complicated design, inefficiency and the weaker security (secure in the random oracles). In return, the Libert et al.’s scheme possesses a solid security (secure in the standard model), but it lacks the previous functions and still suffers from inefficiency because of extremely using lattice trapdoors. In this work, we re-formalize the model and security definitions of fully dynamic group encryption (FDGE) that are essentially equivalent to but more succinct than Nguyen et al.’s; Then, we provide a generic and efficient zero-knowledge proof method for proving that a binary vector is non-zero over lattices, on which a proof for the Prohibitive message filtering policy in the lattice setting is first achieved (yet in a simple manner); Finally, by combining appropriate cryptographic materials and our presented zero-knowledge proofs, we achieve the first latticebased FDGE schemes in a simpler manner, which needs no any lattice trapdoor and is proved secure in the standard model (assuming interaction during the proof phase), outweighing the existing post-quantum secure GE systems in terms of functions, efficiency and security.
2009
EPRINT
Key-Exposure Free Chameleon Hashing and Signatures Based on Discrete Logarithm Systems
Chameleon signatures are based on well established hash-and-sign paradigm, where a \emph{chameleon hash function} is used to compute the cryptographic message digest. Chameleon signatures simultaneously provide the properties of non-repudiation and non-transferability for the signed message. However, the initial constructions of chameleon signatures suffer from the problem of key exposure: the signature forgery results in the signer recovering the recipient's trapdoor information, $i.e.,$ the private key. This creates a strong disincentive for the recipient to forge signatures, partially undermining the concept of non-transferability. Recently, some specific constructions of key-exposure free chameleon hashing are presented, based on RSA or pairings, using the idea of ``Customized Identities". In this paper, we propose the first key-exposure free chameleon hash scheme based on discrete logarithm systems, without using the gap Diffile-Hellman groups. Moreover, one distinguished advantage of the resulting chameleon signature scheme is that the property of ``message hiding" or ``message recovery" can be achieved freely by the signer. Another main contribution in this paper is that we propose the first identity-based chameleon hash scheme without key exposure, which gives a positive answer for the open problem introduced by Ateniese and de Mederious in 2004.
2008
EPRINT
A Tamper-Evident Voting Machine Resistant to Covert Channels
To provide a high level of security guarantee cryptography is introduced into the design of the voting machine. The voting machine based on cryptography is vulnerable to attacks through covert channels. An adversary may inject malicious codes into the voting machine and make it leak vote information unnoticeably by exploiting the randomness used in encryptions and zero-knowledge proofs. In this paper a voting machine resistant to covert channels is designed. It has the following properties: Firstly, it is tamper-evident. The randomness used by the voting machine is generated by the election authority. The inconsistent use of the randomness can be detected by the voter from examining a destroyable verification code. Even if malicious codes are run in the voting machine attacks through subliminal channels are thwarted. Next, it is voter-verifiable. The voter has the ability to verify if the ballot cast by the machine is consistent with her intent without doing complicated cryptographic computation. Finally, the voting system is receipt-free. Vote-buying and coercion are prevented.
2007
EPRINT
On the Forgeability of Wang-Tang-Li's ID-Based Restrictive Partially Blind Signature
Shengli Liu Xiaofeng Chen Fangguo Zhang
Restrictive partially blind signature (RPBS) plays an important role in designing secure electronic cash system. Very recently, Wang, Tang and Li proposed a new ID-based restrictive partially blind signature (ID-RPBS) and gave the security proof. In this paper, we present a cryptanalysis of the scheme and show that the signature scheme does not satisfy the property of {\bf unforgeability} as claimed. More precisely, a user can forge a valid message-signature pair $(ID, msg, {\bf info'}, \sigma')$ instead of the original one $(ID, msg, {\bf info}, \sigma)$, where {\bf info} is the original common agreed information and ${\bf info}'\neq {\bf info}$. Therefore, it will be much dangerous if Wang-Tang-Li's ID-RPBS scheme is applied to the off-line electronic cash system. For example, a bank is supposed to issue an electronic coin (or bill) of \$100 to a user, while the user can change the denomination of the coin (bill) to any value, say \$100, 000, 000, at his will.
2006
EPRINT
Online/Offline Signatures and Multisignatures for AODV and DSR Routing Security
Efficient authentication is one of important security requirements in mobile ad hoc network (MANET) routing systems. The techniques of digital signatures are generally considered as the best candidates to achieve strong authentication. However, using normal digital signature schemes is too costly to MANET due to the computation overheads. Considering the feasibility of incorporating digital signatures in MANET, we incorporate the notion of online/offline signatures, where the computational overhead is shifted to the offline phase. However, due to the diversity of different routing protocols, a universal scheme that suits all MANET routing systems does not exist in the literature. Notably, an authentication scheme for the AODV routing is believed to be not suitable to the DSR routing. In this paper, we first introduce an efficient ID-based online/offline scheme for authentication in AODV and then provide a formal transformation to convert the scheme to an ID-based online/offline multisignature scheme. Our scheme is unique, in the sense that a single ID-based online/offline signature scheme can be applied to both AODV and DSR routing protocols. We provide the generic construction as well as the concrete schemes to show an instantiation of the generic transformation. We also provide security proofs for our schemes based on the random oracle model. Finally, we provide an application of our schemes in the dynamic source routing protocol.
2005
EPRINT
Cryptanalysis and improvement of an ID-based ad-hoc anonymous identification scheme at CT-RSA 05
Fangguo Zhang Xiaofeng Chen
An ad-hoc anonymous identification scheme is a new multi-user cryptographic primitive that allows participants from a user population to form ad hoc groups, and then prove membership anonymously in such groups. Recently, Nguyen \cite{Lan05} proposed an ID-based ad-hoc anonymous identification scheme from bilinear pairings. However, in this paper, we propose an attack on Nguyen's ID-based ad-hoc anonymous identification scheme. We show that any one can impersonate a valid group member to perform the anonymous identification protocol successfully. Furthermore, we propose a solution to improve this scheme against our attack.
2005
EPRINT
Yet Another Short Signatures Without Random Oracles from Bilinear Pairings
Fangguo Zhang Xiaofeng Chen
In recent years, cryptographic protocols based on the bilinear pairings have attracted much attention. One of the most distinguished achievements in this area was the solution to design short signatures. Up to now, there exist two short signature schemes with random oracles and one without random oracles from bilinear pairings. In this paper, we describe another short signature scheme which is existentially unforgeable under a chosen message attack without using random oracles. The security of our scheme depends on a new complexity assumption we call the $k$+1 square roots assumption. We discuss the relationship between the $k$+1 square roots assumption and some related problems and give some conjectures. Further more, the $k$+1 square roots assumption gives even shorter signatures under the random oracles.
2005
EPRINT
Attack on Okamoto et al.'s New Short Signature Schemes
Fangguo Zhang Xiaofeng Chen
We present an attack on a new short signature scheme from bilinear pairing proposed by Okamoto $et$ $al.$ at ITCC'05. We show that any one can derive the secret key of the signer from any two message-signature pairs and so can forge the signer's signature for any message. This means the scheme is totally broken.
2005
EPRINT
A New Short Signature Scheme Without Random Oracles from Bilinear Pairings
In this paper, we propose a new signature scheme that is existentially unforgeable under a chosen message attack without random oracle. The security of our scheme depends on a new complexity assumption called the $k$+1 square roots assumption. We also discuss the relationship between the $k$+1 square roots assumption and some related problems and provide some conjectures. Moreover, the $k$+1 square roots assumption can be used to construct shorter signatures under the random oracle model. As some applications, a new chameleon hash signature scheme and a on-line/off-line signature scheme and a new efficient anonymous credential scheme based on the proposed signature scheme are presented.
2005
EPRINT
ID-based Restrictive Partially Blind Signatures and Applications
Xiaofeng Chen Fangguo Zhang Shengli Liu
Restrictive blind signatures allow a recipient to receive a blind signature on a message not known to the signer but the choice of message is restricted and must conform to certain rules. Partially blind signatures allow a signer to explicitly include necessary information (expiration date, collateral conditions, or whatever) in the resulting signatures under some agreement with receiver. Restrictive partially blind signatures incorporate the advantages of these two blind signatures. The existing restrictive partially blind signature scheme was constructed under certificate-based (CA-based) public key systems. In this paper we follow Brand's construction to propose the first identity-based (ID-based) restrictive blind signature scheme from bilinear pairings. Furthermore, we first propose an ID-based restrictive partially blind signature scheme, which is provably secure in the random oracle model. As an application, we use the proposed signature scheme to build an untraceable off-line electronic cash system followed Brand's construction.
2004
EPRINT
Chameleon Hashing without Key Exposure
Xiaofeng Chen Fangguo Zhang Kwangjo Kim
Chameleon signatures are based on well established hash-and-sign paradigm, where a \emph{chameleon hash function} is used to compute the cryptographic message digest. Chameleon signatures simultaneously provide the properties of non-repudiation and non-transferability for the signed message, $i.e.,$ the designated recipient is capable of verifying the validity of the signature, but cannot disclose the contents of the signed information to convince any third party without the signer's consent. One disadvantage of the initial chameleon signature scheme is that signature forgery results in the signer recovering the recipient's trapdoor information, $i.e.,$ private key. Therefore, the signer can use this information to deny \emph{other} signatures given to the recipient. This creates a strong disincentive for the recipient to forge signatures, partially undermining the concept of non-transferability. In this paper, we firstly propose a chameleon hashing scheme in the gap Diffie-Hellman group to solve the problem of key exposure. We can prove that the recipient's trapdoor information will never be compromised under the assumption of Computation Diffie-Hellman Problem (CDHP) is intractable. Moreover, we use the proposed chameleon hashing scheme to design a chameleon signature scheme.
2003
EPRINT
A New Approach to Prevent Blackmailing in E-Cash
Xiaofeng Chen Fangguo Zhang Yumin Wang
Blackmailing may be the most serious drawback of the known electronic cash systems offering unconditional anonymity. Recently, D.Kugler proposed an on-line payment system without trusted party to prevent blackmailing based on the idea of marking. In this paper, some disadvantages of D.Kugler??s scheme are analyzed and then a new online electronic cash scheme to prevent blackmailing is present by using group blind signature technique. In our scheme, the blackmailed cash was marked by an entity, called supervisor, therefore the bank can distinguish it from the valid cash. Also, we can modify our scheme to be offline so that it can used to decrease other crimes, e.g., money laundering, bribery etc. in electronic cash system.
2003
EPRINT
A New ID-based Group Signature Scheme from Bilinear Pairings
Xiaofeng Chen Fangguo Zhang Kwangjo Kim
We argue that traditional ID-based systems from pairings seem unsuitable for designing group signature schemes due to the problem of key escrow. In this paper we propose new ID-based public key systems without trustful KGC from bilinear pairings. In our new ID-based systems, if dishonest KGC impersonates an honest user to communicate with others, the user can provide a proof of treachery of the KGC afterwards, which is similar to CA-based systems. Furthermore, we propose a group signature scheme under the new systems, the security and performance of which rely on the new systems. The size of the group public key and the length of the signature are independent on the numbers of the group.
2003
EPRINT
Attack on Two ID-based Authenticated Group Key Agreement Schemes
Fangguo Zhang Xiaofeng Chen
Authenticated group key agreement problem is important in many modern collaborative and distributed applications. Recently, there are two ID-based authenticated group key agreement schemes have been proposed, one is Choi $et\ al.$'s \cite{CHL04} scheme, the other is Du $et\ al.$'s \cite{Du03} scheme. They are all constructed from bilinear pairings based on Burmester and Desmedt scheme \cite{BD94}. In this paper, we propose an impersonation attack on the two schemes. We show that any two malicious users can impersonate an entity to agree some session keys in a new group if these two malicious users have the previous authentication transcripts of this entity. So, the two ID-based authenticated group key agreement schemes can not provide the authenticity as claimed. We propose a proposal to repair these schemes.