International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Vassil S. Dimitrov

Publications

Year
Venue
Title
2015
EPRINT
2015
CHES
2008
EPRINT
Fast Multiple Point Multiplication on Elliptic Curves over Prime and Binary Fields using the Double-Base Number System
Jithra Adikari Vassil S. Dimitrov Pradeep K. Mishra
Multiple-point multiplication on elliptic curves is the highest computational complex operation in the elliptic curve cyptographic based digital signature schemes. We describe three algorithms for multiple-point multiplication on elliptic curves over prime and binary fields, based on the representations of two scalars, as sums of mixed powers of 2 and 3. Our approaches include sliding window mechanism and some precomputed values of points on the curve. A proof for formulae to calculate the number of double-based elements, doublings and triplings below 2^n is listed. Affine coordinates and Jacobian coordinates are considered in both prime fields and binary fields. We have achieved upto 24% of improvements in new algorithms for multiple-point multiplication.
2008
EPRINT
Hybrid Binary-Ternary Joint Sparse Form and its Application in Elliptic Curve Cryptography
Jithra Adikari Vassil Dimitrov Laurent Imbert
Multi-exponentiation is a common and time consuming operation in public-key cryptography. Its elliptic curve counterpart, called multi-scalar multiplication is extensively used for digital signature verification. Several algorithms have been proposed to speed-up those critical computations. They are based on simultaneously recoding a set of integers in order to minimize the number of general multiplications or point additions. When signed-digit recoding techniques can be used, as in the world of elliptic curves, Joint Sparse Form (JSF) and interleaving $w$-NAF are the most efficient algorithms. In this paper, a novel recoding algorithm for a pair of integers is proposed, based on a decomposition that mixes powers of 2 and powers of 3. The so-called Hybrid Binary-Ternary Joint Sparse Form require fewer digits and is sparser than the JSF and the interleaving $w$-NAF. Its advantages are illustrated for elliptic curve double-scalar multiplication; the operation counts show a gain of up to 18\%.
2007
EPRINT
Efficient Quintuple Formulas for Elliptic Curves and Efficient Scalar Multiplication Using Multibase Number Representation
Vassil Dimitrov Pradeep Kumar Mishra
In the current work we propose two efficient formulas for computing the $5$-fold ($5P$) of an elliptic curve point $P$. One formula is for curves over finite fields of even characteristic and the other is for curves over prime fields. Double base number systems (DBNS) have been gainfully exploited to compute scalar multiplication efficiently in ECC. Using the proposed point quintupling formulas one can use 2,5 and 3,5 (besides 3,5) as bases of the double base number system. In the current work we propose a scalar multiplication algorithm, which expands the scalar using three bases 2, 3 and 5 and computes the scalar multiplication very efficiently. The proposed scheme is faster than all sequential scalar multiplication algorithms reported in literature.
2006
ASIACRYPT
2006
CHES
2006
EPRINT
Provably Sublinear Point Multiplication on Koblitz Curves and its Hardware Implementation
We describe algorithms for point multiplication on Koblitz curves using multiple-base expansions of the form $k = \sum \pm \tau^a (\tau-1)^b$ and $k= \sum \pm \tau^a (\tau-1)^b (\tau^2 - \tau - 1)^c.$ We prove that the number of terms in the second type is sublinear in the bit length of k, which leads to the first provably sublinear point multiplication algorithm on Koblitz curves. For the first type, we conjecture that the number of terms is sublinear and provide numerical evidence demonstrating that the number of terms is significantly less than that of $\tau$-adic non-adjacent form expansions. We present details of an innovative FPGA implementation of our algorithm and performance data demonstrating the efficiency of our method.
2005
ASIACRYPT
2005
EPRINT
Fast Elliptic Curve Point Multiplication using Double-Base Chains
V. S. Dimitrov L. Imbert P. K. Mishra
Among the various arithmetic operations required in implementing public key cryptographic algorithms, the elliptic curve point multiplication has probably received the maximum attention from the research community in the last decade. Many methods for efficient and secure implementation of point multiplication have been proposed. The efficiency of these methods mainly depends on the representation one uses for the scalar multiplier. In the current work we propose an efficient algorithm based on the so-called double-base number system. We introduce the new concept of double-base chains which, if manipulated with care, can significantly reduce the complexity of scalar multiplication on elliptic curves. Besides we have adopted some other measures to further reduce the operation count. Our algorithm compares favorably against classical and other similar approaches.