International Association for Cryptologic Research

International Association
for Cryptologic Research


Adam Suhl


Faster Amortized FHEW bootstrapping using Ring Automorphisms
Amortized bootstrapping offers a way to simultaneously refresh many ciphertexts of a fully homomorphic encryption scheme, at a total cost comparable to that of refreshing a single ciphertext. An amortization method for FHEW-style cryptosystems was first proposed by (Micciancio and Sorrell, ICALP 2018), who showed that the amortized cost of bootstrapping $n$ FHEW-style ciphertexts can be reduced from $\tilde O(n)$ basic cryptographic operations to just $\tilde O(n^{\epsilon})$, for any constant $\epsilon>0$. However, despite the promising asymptotic saving, the algorithm was rather inpractical due to a large constant (exponential in $1/\epsilon$) hidden in the asymptotic notation. In this work, we propose an alternative amortized boostrapping method with much smaller overhead, still achieving $O(n^\epsilon)$ asymptotic amortized cost, but with a hidden constant that is only linear in $1/\epsilon$, and with reduced noise growth. This is achieved following the general strategy of (Micciancio and Sorrell), but replacing their use of the Nussbaumer transform, with a much more practical Number Theoretic Transform, with multiplication by twiddle factors implemented using ring automorphisms. A key technical ingredient to do this is a new ``scheme switching'' technique proposed in this paper which may be of independent interest.
On the Possibility of a Backdoor in the Micali-Schnorr Generator
In this paper, we study both the implications and potential impact of backdoored parameters for two RSA-based pseudorandom number generators: the ISO-standardized Micali-Schnorr generator and a closely related design, the RSA PRG. We observe, contrary to common understanding, that the security of the Micali-Schnorr PRG is not tightly bound to the difficulty of inverting RSA. We show that the Micali-Schnorr construction remains secure even if one replaces RSA with a publicly evaluatable PRG, or a function modeled as an efficiently invertible random permutation. This implies that any cryptographic backdoor must somehow exploit the algebraic structure of RSA, rather than an attacker’s ability to invert RSA or the presence of secret keys. We exhibit two such backdoors in related constructions: a family of exploitable parameters for the RSA PRG, and a second vulnerable construction for a finite-field variant of Micali-Schnorr. We also observe that the parameters allowed by the ISO standard are incompletely specified, and allow insecure choices of exponent. Several of our backdoor constructions make use of lattice techniques, in particular multivariate versions of Coppersmith’s method for finding small solutions to polynomials modulo integers.