International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Soumya Chattopadhyay

Publications

Year
Venue
Title
2021
TOSC
On Length Independent Security Bounds for the PMAC Family
At FSE 2017, Gaži et al. demonstrated a pseudorandom function (PRF) distinguisher (Gaži et al., ToSC 2016(2)) on PMAC with Ω(lq2/2n) advantage, where q, l, and n, denote the number of queries, maximum permissible query length (in terms of n-bit blocks), and block size of the underlying block cipher. This, in combination with the upper bounds of Ο(lq2/2n) (Minematsu and Matsushima, FSE 2007) and Ο(qσ/2n) (Nandi and Mandal, J. Mathematical Cryptology 2008(2)), resolved the long-standing problem of exact security of PMAC. Gaži et al. also showed that the dependency on l can be dropped (i.e. O(q2/2n) bound up to l ≤ 2n/2) for a simplified version of PMAC, called sPMAC, by replacing the Gray code-based masking in PMAC with any 4-wise independent universal hash-based masking. Recently, Naito proposed another variant of PMAC with two powering-up maskings (Naito, ToSC 2019(2)) that achieves l-free bound of O(q2/2n), provided l ≤ 2n/2. In this work, we first identify a flaw in the analysis of Naito’s PMAC variant that invalidates the security proof. Apparently, the flaw is not easy to fix under the existing proof setup. We then formulate an equivalent problem which must be solved in order to achieve l-free security bounds for this variant. Second, we show that sPMAC achieves O(q2/2n) bound for a weaker notion of universality as compared to the earlier condition of 4-wise independence. Third, we analyze the security of PMAC1 (a popular variant of PMAC) with a simple modification in the linear combination of block cipher outputs. We show that this simple modification of PMAC1 has tight security O(q2/2n) provided l ≤ 2n/4. Even if l < 2n/4, we still achieve same tight bound as long as total number of blocks in all queries is less than 22n/3.
2021
ASIACRYPT
Fine-tuning the ISO/IEC Standard LightMAC
Soumya Chattopadhyay Ashwin Jha Mridul Nandi
LightMAC, by Luykx et al., is a block cipher based message authentication code (MAC). The simplicity of design and low overhead allows it to have very compact implementations. As a result, it has been recently chosen as an ISO/IEC standard MAC for lightweight applications. LightMAC has been shown to achieve query-length independent security bound of $O(q^2/2^n)$ when instantiated with two independently keyed $n$-bit block ciphers, where $q$ denotes the number of MAC queries and the query-length is upper bounded by $(n-s)2^s$ bits for a fixed counter size $s$. In this paper, we aim to minimize the number of block cipher keys in LightMAC. First, we show that the original LightMAC instantiated with a single block cipher key, referred as 1k-LightMAC, achieves security bound of $O(q^2/2^n)$ while the query-length is at least $(n-s)$ bits and at most $(n-s)\min\{2^{n/4},2^s\}$ bits. Second, we show that a minor variant of 1k-LightMAC, dubbed as LightMAC-ds, achieves security bound of $O(q^2/2^n)$ while query-length is upper bounded by $(n-s)2^{s-1}$ bits. Of independent interest, our security proof of 1k-LightMAC employs a novel sampling approach, called the reset-sampling, as a subroutine within the H-coefficient proof setup.