International Association for Cryptologic Research

International Association
for Cryptologic Research


Joshua Deaton


The Nested Subset Differential Attack: A Practical Direct Attack Against LUOV which Forges a Signature within 210 Minutes 📺
In 2017, Ward Beullenset al.submitted Lifted Unbalanced Oil and Vinegar [4], which is a modification to the Unbalanced Oil and Vinegar Schemeby Patarin. Previously, Ding et al.proposed the Subfield Differential Attack [20]which prompted a change of parameters by the authors of LUOV for the second round of the NIST post quantum standardization competition [3].In this paper we propose a modification to the Subfield Differential Attackcalled the Nested Subset Differential Attack which fully breaks half of the parameter sets put forward. We also show by experimentation that this attack is practically possible to do in under 210 minutes for the level I security parameters and not just a theoretical attack. The Nested Subset Differential attack is a large improvement of the Subfield differential attack which can be used in real world circumstances. Moreover, we will only use what is called the "lifted" structure of LUOV, and our attack can be thought as a development of solving"lifted" quadratic systems.
Cryptanalysis of The Lifted Unbalanced Oil Vinegar Signature Scheme 📺
In 2017, Ward Beullens et al. submitted Lifted Unbalanced Oil and Vinegar (LUOV), a signature scheme based on the famous multivariate public-key cryptosystem (MPKC) called Unbalanced Oil and Vinegar (UOV), to NIST for the competition for post-quantum public-key scheme standardization. The defining feature of LUOV is that, though the public key P works in the extension field of degree r of F2, the coefficients of P come from F2. This is done to significantly reduce the size of P. The LUOV scheme is now in the second round of the NIST PQC standardization process. In this paper, we introduce a new attack on LUOV. It exploits the "lifted" structure of LUOV to reduce direct attacks on it to those over a subfield. We show that this reduces the complexity below the targeted security for the NIST postquantum standardization competition.