International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Ryota Nakamichi

Publications and invited talks

Year
Venue
Title
2020
TOSC
Iterative Block Ciphers from Tweakable Block Ciphers with Long Tweaks 📺
Ryota Nakamichi Tetsu Iwata
We consider a problem of constructing a secure block cipher from a tweakable block cipher (TBC) with long tweaks. Given a TBC with n-bit blocks and Γn-bit tweaks for Γ ≥ 1, one of the constructions by Minematsu in DCC 2015 shows that a simple iteration of the TBC for 3d rounds yields a block cipher with dn-bit blocks that is secure up to 2dn/2 queries, where d = Γ + 1. In this paper, we show three results.1. Iteration of 3d − 2 rounds is enough for the security up to 2dn/2 queries, i.e., the security remains the same even if we reduce the number of rounds by two.2. When the number of queries is limited to 2n, d+1 rounds are enough, and with d + l rounds for 1 ≤ l ≤ d − 1, the security bound improves as l grows.3. A d-round construction gives a block cipher secure up to 2n/2 queries, i.e., it achieves the classical birthday-bound security. Our results show that a block cipher with beyond-birthday-bound (BBB) security (with respect to n) is obtained as low as d + 1 rounds, and we draw the security spectrum of d + l round version in the range of 1 ≤ l ≤ d−1 and l = 2d−2 for BBB security, and l = 0 for birthday-bound security.
2020
TOSC
Beyond-Birthday-Bound Secure Cryptographic Permutations from Ideal Ciphers with Long Keys 📺
Ryota Nakamichi Tetsu Iwata
Coron et al. showed a construction of a 3-round 2n-bit cryptographic permutation from three independent n-bit ideal ciphers with n-bit keys (TCC 2010). Guo and Lin showed a construction of a (2d − 1)-round dn-bit cryptographic permutation from 2d − 1 independent n-bit ideal ciphers with kn-bit keys, where d = k + 1 (Cryptography and Communications, 2015). These constructions have an indifferentiability security bound of O(q2/2n) against adversaries that make at most q queries. The bound is commonly referred to as birthday-bound security. In this paper, we show that a 5-round version of Coron et al.’s construction and (2d+1)-round version of Guo and Lin’s construction yield a cryptographic permutation with an indifferentiability security bound of O(q2/22n), i.e., by adding two more rounds, these constructions have beyond-birthday-bound security. Furthermore, under the assumption that q ≤ 2n, we show that Guo and Lin’s construction with 2d+2l−1 rounds yields a cryptographic permutation with a security bound of O(q2/2(l+1)n), where 1 ≤ l ≤ d − 1, i.e., the security bound exponentially improves by adding every two more rounds, up to 4d − 3 rounds. To the best of our knowledge, our result gives the first cryptographic permutation that is built from n-bit ideal ciphers and has a full n-bit indifferentiability security bound.

Coauthors

Tetsu Iwata (2)
Ryota Nakamichi (2)