International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Rafael Kurek

Publications

Year
Venue
Title
2018
ASIACRYPT
Short Digital Signatures and ID-KEMs via Truncation Collision Resistance
Tibor Jager Rafael Kurek
Truncation collision resistance is a simple non-interactive complexity assumption that seems very plausible for standard cryptographic hash functions like SHA-3. We describe how this assumption can be leveraged to obtain standard-model constructions of public-key cryptosystems that previously seemed to require a programmable random oracle. This includes the first constructions of identity-based key encapsulation mechanisms (ID-KEMs) and digital signatures over bilinear groups with full adaptive security and without random oracles, where a ciphertext or signature consists of only a single element of a prime-order group. We also describe a generic construction of ID-KEMs with full adaptive security from a scheme with very weak security (“selective and non-adaptive chosen-ID security”), and a similar generic construction for digital signatures.
2018
ASIACRYPT
Simple and More Efficient PRFs with Tight Security from LWE and Matrix-DDH
Tibor Jager Rafael Kurek Jiaxin Pan
We construct efficient and tightly secure pseudorandom functions (PRFs) with only logarithmic security loss and short secret keys. This yields very simple and efficient variants of well-known constructions, including those of Naor-Reingold (FOCS 1997) and Lewko-Waters (ACM CCS 2009). Most importantly, in combination with the construction of Banerjee, Peikert and Rosen (EUROCRYPT 2012) we obtain the currently most efficient LWE-based PRF from a weak LWE-assumption with a much smaller modulus than the original construction. In comparison to the only previous construction with this property, which is due to Döttling and Schröder (CRYPTO 2015), we use a modulus of similar size, but only a single instance of the underlying PRF, instead of parallel instances, where is the security parameter. Like Döttling and Schröder, our security proof is only almost back-box, due to the fact that the number of queries made by the adversary and its advantage must be known a-priori.Technically, we introduce all-prefix universal hash functions (APUHFs), which are hash functions that are (almost-)universal, even if any prefix of the output is considered. We give simple and very efficient constructions of APUHFs, and show how they can be combined with the augmented cascade of Boneh et al. (ACM CCS 2010) to obtain our results. Along the way, we develop a new and more direct way to prove security of PRFs based on the augmented cascade.

Coauthors

Tibor Jager (2)
Jiaxin Pan (1)