International Association for Cryptologic Research

International Association
for Cryptologic Research


Brandon Broadnax


Environmentally Friendly Composable Multi-Party Computation in the Plain Model from Standard (Timed) Assumptions 📺
Starting with the work of Rivest et al. in 1996, timed assumptions have found many applications in cryptography, building e.g. the foundation of the blockchain technology. They also have been used in the context of classical MPC, e.g. to enable fairness. We follow this line of research to obtain composable general MPC in the plain model. This approach comes with a major advantage regarding environmental friendliness, a property coined by Canetti et al. (FOCS 2013). Informally, this means that our constructions do not “hurt” game-based security properties of protocols that hold against polynomial-time adversaries when executed alone. As an additional property, our constructions can be plugged into any UC-secure protocol without loss of security. Towards proving the security of our constructions, we introduce a variant of the UC security notion that captures timed cryptographic assumptions. Combining standard timed commitment schemes and standard polynomial-time hardness assumptions, we construct a composable commitment scheme in the plain model. As this construction is constant-round and black-box, we obtain the first fully environmentally friendly composable constant-round black-box general MPC protocol in the plain model from standard (timed) assumptions.
Non-malleability vs. CCA-Security: The Case of Commitments
In this work, we settle the relations among a variety of security notions related to non-malleability and CCA-security that have been proposed for commitment schemes in the literature. Interestingly, all our separations follow from two generic transformations. Given two appropriate security notions X and Y from the class of security notions we compare, these transformations take a commitment scheme that fulfills notion X and output a commitment scheme that still fulfills notion X but not notion Y.Using these transformations, we are able to show that some of the known relations for public-key encryption do not carry over to commitments. In particular, we show that, surprisingly, parallel non-malleability and parallel CCA-security are not equivalent for commitment schemes. This stands in contrast to the situation for public-key encryption where these two notions are equivalent as shown by Bellare et al. at CRYPTO ‘99.