International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Florian Bourse

Affiliation: Ecole Normale Supérieure

Publications

Year
Venue
Title
2019
ASIACRYPT
Divisible E-Cash from Constrained Pseudo-Random Functions
Electronic cash (e-cash) is the digital analogue of regular cash which aims at preserving users’ privacy. Following Chaum’s seminal work, several new features were proposed for e-cash to address the practical issues of the original primitive. Among them, divisibility has proved very useful to enable efficient storage and spendings. Unfortunately, it is also very difficult to achieve and, to date, quite a few constructions exist, all of them relying on complex mechanisms that can only be instantiated in one specific setting. In addition security models are incomplete and proofs sometimes hand-wavy.In this work, we first provide a complete security model for divisible e-cash, and we study the links with constrained pseudo-random functions (PRFs), a primitive recently formalized by Boneh and Waters. We exhibit two frameworks of divisible e-cash systems from constrained PRFs achieving some specific properties: either key homomorphism or delegability. We then formally prove these frameworks, and address two main issues in previous constructions: two essential security notions were either not considered at all or not fully proven. Indeed, we introduce the notion of clearing, which should guarantee that only the recipient of a transaction should be able to do the deposit, and we show the exculpability, that should prevent an honest user to be falsely accused, was wrong in most proofs of the previous constructions. Some can easily be repaired, but this is not the case for most complex settings such as constructions in the standard model. Consequently, we provide the first construction secure in the standard model, as a direct instantiation of our framework.
2018
CRYPTO
Fast Homomorphic Evaluation of Deep Discretized Neural Networks 📺
The rise of machine learning as a service multiplies scenarios where one faces a privacy dilemma: either sensitive user data must be revealed to the entity that evaluates the cognitive model (e.g., in the Cloud), or the model itself must be revealed to the user so that the evaluation can take place locally. Fully Homomorphic Encryption (FHE) offers an elegant way to reconcile these conflicting interests in the Cloud-based scenario and also preserve non-interactivity. However, due to the inefficiency of existing FHE schemes, most applications prefer to use Somewhat Homomorphic Encryption (SHE), where the complexity of the computation to be performed has to be known in advance, and the efficiency of the scheme depends on this global complexity.In this paper, we present a new framework for homomorphic evaluation of neural networks, that we call FHE–DiNN, whose complexity is strictly linear in the depth of the network and whose parameters can be set beforehand. To obtain this scale-invariance property, we rely heavily on the bootstrapping procedure. We refine the recent FHE construction by Chillotti et al. (ASIACRYPT 2016) in order to increase the message space and apply the sign function (that we use to activate the neurons in the network) during the bootstrapping. We derive some empirical results, using TFHE library as a starting point, and classify encrypted images from the MNIST dataset with more than 96% accuracy in less than 1.7 s.Finally, as a side contribution, we analyze and introduce some variations to the bootstrapping technique of Chillotti et al. that offer an improvement in efficiency at the cost of increasing the storage requirements.
2017
PKC
2016
CRYPTO
2015
EPRINT
2015
PKC