International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Soonhak Kwon

Affiliation: Sungkyunkwan University

Publications

Year
Venue
Title
2014
EPRINT
2008
PKC
2007
EPRINT
AN OPTIMIZED HARDWARE ARCHITECTURE OF MONTGOMERY MULTIPLICATION ALGORITHM
Montgomery multiplication is one of the fundamental operations used in cryptographic algorithms, such as RSA and Elliptic Curve Cryptosystems. At CHES 1999, Tenca and Koc introduced a now-classical architecture for implementing Montgomery multiplication in hardware. With parameters optimized for minimum latency, this architecture performs a single Montgomery multiplication in approximately 2n clock cycles, where n is the size of operands in bits. In this paper we propose and discuss an optimized hardware architecture performing the same operation in approximately n clock cycles. Our architecture is based on pre-computing partial results using two possible assumptions regarding the most significant bit of the previous word, and is only marginally more demanding in terms of the circuit area. The new radix-2 architecture can be extended for the case of radix-4, while preserving a factor of two speed-up over the corresponding radix-4 design by Tenca, Todorov, and Koc from CHES 2001. Our architecture has been verified by modeling it in Verilog-HDL, implementing it using Xilinx Virtex-II 6000 FPGA, and experimentally testing it using SRC-6 reconfigurable computer.
2006
CHES
2006
EPRINT
FPGA Accelerated Tate Pairing Based Cryptosystems over Binary Fields
Chang Shu Soonhak Kwon Kris Gaj
Though the implementation of the Tate pairing is commonly believed to be computationally more intensive than other cryptographic operations, such as ECC point multiplication, there has been a substantial progress in speeding up the Tate pairing computations. Because of their inherent parallelism, the existing Tate pairing algorithms are very suitable for hardware implementation aimed at achieving a high operation speed. Supersingular elliptic curves over binary fields are good candidates for hardware implementation due to their simple underlying algorithms and binary arithmetic. In this paper we propose efficient Tate pairing implementations over binary fields $\mathbb F_{2^{239}}$ and $\mathbb F_{2^{283}}$ via FPGA. Though our field sizes are larger than those used in earlier architectures with the same security strength based on cubic elliptic curves or binary hyperelliptic curves, fewer multiplications in the underlying field are required, so that the computational latency for one pairing can be reduced. As a result, our pairing accelerators implemented via FPGA can run 15-to-25 times faster than other FPGA realizations at the same level of security strength, and at the same time achieve lower product of latency by area.
2004
CHES
2004
EPRINT
Efficient Tate Pairing Computation for Supersingular Elliptic Curves over Binary Fields
Soonhak Kwon
We present a closed formula for the Tate pairing computation for supersingular elliptic curves defined over the binary field F_{2^m} of odd dimension. There are exactly three isomorphism classes of supersingular elliptic curves over F_{2^m} for odd m and our result is applicable to all these curves. Moreover we show that our algorithm and also the Duursma-Lee algorithm can be modified to another algorithm which does not need any inverse Frobenius operation (square root or cube root extractions) without sacrificing any of the computational merits of the original algorithm. Since the computation of the inverse Frobenius map is not at all trivial in a polynomial basis and since a polynomial basis is still a preferred choice for the Tate pairing computation in many situations, this new algorithm avoiding the inverse Frobenius operation has some advantage over the existing algorithms.
2003
CHES

Program Committees

CHES 2013
CHES 2010
CHES 2009