International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Atul Luykx

Affiliation: Visa Research, USA

Publications

Year
Venue
Title
2018
EUROCRYPT
2018
TOSC
SUNDAE: Small Universal Deterministic Authenticated Encryption for the Internet of Things
Lightweight cryptography was developed in response to the increasing need to secure devices for the Internet of Things. After significant research effort, many new block ciphers have been designed targeting lightweight settings, optimizing efficiency metrics which conventional block ciphers did not. However, block ciphers must be used in modes of operation to achieve more advanced security goals such as data confidentiality and authenticity, a research area given relatively little attention in the lightweight setting. We introduce a new authenticated encryption (AE) mode of operation, SUNDAE, specially targeted for constrained environments. SUNDAE is smaller than other known lightweight modes in implementation area, such as CLOC, JAMBU, and COFB, however unlike these modes, SUNDAE is designed as a deterministic authenticated encryption (DAE) scheme, meaning it provides maximal security in settings where proper randomness is hard to generate, or secure storage must be minimized due to expense. Unlike other DAE schemes, such as GCM-SIV, SUNDAE can be implemented efficiently on both constrained devices, as well as the servers communicating with those devices. We prove SUNDAE secure relative to its underlying block cipher, and provide an extensive implementation study, with results in both software and hardware, demonstrating that SUNDAE offers improved compactness and power consumption in hardware compared to other lightweight AE modes, while simultaneously offering comparable performance to GCM-SIV on parallel high-end platforms.
2017
CRYPTO
2017
ASIACRYPT
2017
TOSC
Understanding RUP Integrity of COLM
The authenticated encryption scheme COLM is a third-round candidate in the CAESAR competition. Much like its antecedents COPA, ELmE, and ELmD, COLM consists of two parallelizable encryption layers connected by a linear mixing function. While COPA uses plain XOR mixing, ELmE, ELmD, and COLM use a more involved invertible mixing function. In this work, we investigate the integrity of the COLM structure when unverified plaintext is released, and demonstrate that its security highly depends on the choice of mixing function. Our results are threefold. First, we discuss the practical nonce-respecting forgery by Andreeva et al. (ASIACRYPT 2014) against COPA’s XOR mixing. Then we present a noncemisusing forgery against arbitrary mixing functions with practical time complexity. Finally, by using significantly larger queries, we can extend the previous forgery to be nonce-respecting.
2017
TOSC
Efficient Length Doubling From Tweakable Block Ciphers
We present a length doubler, LDT, that turns an n-bit tweakable block cipher into an efficient and secure cipher that can encrypt any bit string of length [n..2n − 1]. The LDT mode is simple, uses only two cryptographic primitive calls (while prior work needs at least four), and is a strong length-preserving pseudorandom permutation if the underlying tweakable block ciphers are strong tweakable pseudorandom permutations. We demonstrate that LDT can be used to neatly turn an authenticated encryption scheme for integral data into a mode for arbitrary-length data.
2016
EUROCRYPT
2016
FSE
2016
TOSC
Security Analysis of BLAKE2's Modes of Operation
BLAKE2 is a hash function introduced at ACNS 2013, which has been adopted in many constructions and applications. It is a successor to the SHA-3 finalist BLAKE, which received a significant amount of security analysis. Nevertheless, BLAKE2 introduces sufficient changes so that not all results from BLAKE carry over, meaning new analysis is necessary. To date, all known cryptanalysis done on BLAKE2 has focused on its underlying building blocks, with little focus placed on understanding BLAKE2’s generic security. We prove that BLAKE2’s compression function is indifferentiable from a random function in a weakly ideal cipher model, which was not the case for BLAKE. This implies that there are no generic attacks against any of the modes that BLAKE2 uses.
2015
EPRINT
2015
CRYPTO
2014
EPRINT
2014
EPRINT
2014
ASIACRYPT
2014
ASIACRYPT
2014
FSE
2014
FSE
2013
ASIACRYPT

Program Committees

FSE 2020
Eurocrypt 2019
Asiacrypt 2019
Asiacrypt 2018