International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Billy Bob Brumley

Affiliation: Tampere University of Technology

Publications

Year
Venue
Title
2019
TCHES
Cache-Timing Attacks on RSA Key Generation
During the last decade, constant-time cryptographic software has quickly transitioned from an academic construct to a concrete security requirement for real-world libraries. Most of OpenSSL’s constant-time code paths are driven by cryptosystem implementations enabling a dedicated flag at runtime. This process is perilous, with several examples emerging in the past few years of the flag either not being set or software defects directly mishandling the flag. In this work, we propose a methodology to analyze security-critical software for side-channel insecure code path traversal. Applying our methodology to OpenSSL, we identify three new code paths during RSA key generation that potentially leak critical algorithm state. Exploiting one of these leaks, we design, implement, and mount a single trace cache-timing attack on the GCD computation step. We overcome several hurdles in the process, including but not limited to: (1) granularity issues due to word-size operands to the GCD function; (2) bulk processing of desynchronized trace data; (3) non-trivial error rate during information extraction; and (4) limited high-confidence information on the modulus factors. Formulating lattice problem instances after obtaining and processing this limited information, our attack achieves roughly a 27% success rate for key recovery using the empirical data from 10K trials.
2015
EPRINT
2010
EPRINT
Secure and Fast Implementations of Two Involution Ciphers
Billy Bob Brumley
Anubis and Khazad are closely related involution block ciphers. Building on two recent AES software results, this work presents a number of constant-time software implementations of Anubis and Khazad for processors with a byte-vector shuffle instruction, such as those that support SSSE3. For Anubis, the first is serial in the sense that it employs only one cipher instance and is compatible with all standard block cipher modes. Efficiency is largely due to the S-box construction that is simple to realize using a byte shuffler. The equivalent for Khazad runs two parallel instances in counter mode. The second for each cipher is a parallel bit-slice implementation in counter mode.
2010
CHES
2009
ASIACRYPT

Program Committees

CHES 2018