International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Anne Broadbent

Affiliation: University of Ottawa

Publications

Year
Venue
Title
2020
TCC
Quantum encryption with certified deletion 📺
Anne Broadbent Rabib Islam
Given a ciphertext, is it possible to prove the deletion of the underlying plaintext? Since classical ciphertexts can be copied, clearly such a feat is impossible using classical information alone. In stark contrast to this, we show that quantum encodings enable certified deletion. More precisely, we show that it is possible to encrypt classical data into a quantum ciphertext such that the recipient of the ciphertext can produce a classical string which proves to the originator that the recipient has relinquished any chance of recovering the plaintext should the key be revealed. Our scheme is feasible with current quantum technology: the honest parties only require quantum devices for single-qubit preparation and measurements; the scheme is also robust against noise in these devices.Furthermore, we provide an analysis that is suitable in the finite-key regime.
2015
JOFC
2015
EPRINT
2015
CRYPTO
2013
CRYPTO
2008
EPRINT
Information-Theoretically Secure Voting Without an Honest Majority
Anne Broadbent Alain Tapp
We present three voting protocols with unconditional privacy and information-theoretic correctness, without assuming any bound on the number of corrupt voters or voting authorities. All protocols have polynomial complexity and require private channels and a simultaneous broadcast channel. Our first protocol is a basic voting scheme which allows voters to interact in order to compute the tally. Privacy of the ballot is unconditional, but any voter can cause the protocol to fail, in which case information about the tally may nevertheless transpire. Our second protocol introduces voting authorities which allow the implementation of the first protocol, while reducing the interaction and limiting it to be only between voters and authorities and among the authorities themselves. The simultaneous broadcast is also limited to the authorities. As long as a single authority is honest, the privacy is unconditional, however, a single corrupt authority or a single corrupt voter can cause the protocol to fail. Our final protocol provides a safeguard against corrupt voters by enabling a verification technique to allow the authorities to revoke incorrect votes. We also discuss the implementation of a simultaneous broadcast channel with the use of temporary computational assumptions, yielding versions of our protocols achieving everlasting security.
2007
ASIACRYPT
2007
ASIACRYPT

Program Committees

Eurocrypt 2020
Crypto 2018