International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Katja Schmidt-Samoa

Publications

Year
Venue
Title
2006
PKC
2005
EPRINT
A New Rabin-type Trapdoor Permutation Equivalent to Factoring and Its Applications
Katja Schmidt-Samoa
Public key cryptography has been invented to overcome some key management problems in open networks. Although nearly all aspects of public key cryptography rely on the existence of trapdoor one-way functions, only a very few candidates of this primitive have been observed yet. In this paper, we introduce a new trapdoor one-way permutation based on the hardness of factoring integers of $p^2q$-type. We also propose a variant of this function with a different domain that provides some advantages for practical applications. To confirm this statement, we develop a simple hybrid encryption scheme based on our proposed trapdoor permutation that is CCA-secure in the random oracle model.
2004
CRYPTO
2004
EPRINT
Signed Binary Representations Revisited
The most common method for computing exponentiation of random elements in Abelian groups are sliding window schemes, which enhance the efficiency of the binary method at the expense of some precomputation. In groups where inversion is easy (e.g. elliptic curves), signed representations of the exponent are meaningful because they decrease the amount of required precomputation. The asymptotic best signed method is wNAF, because it minimizes the precomputation effort whilst the non-zero density is nearly optimal. Unfortunately, wNAF can be computed only from the least significant bit, i.e. right-to-left. However, in connection with memory constraint devices left-to-right recoding schemes are by far more valuable. In this paper we define the MOF (Mutual Opposite Form), a new canonical representation of signed binary strings, which can be computed in any order. Therefore we obtain the first left-to-right signed exponent-recoding scheme for general width w by applying the width w sliding window conversion on MOF left-to-right. Moreover, the analogue right-to-left conversion on MOF yields wNAF, which indicates that the new class is the natural left-to-right analogue to the useful wNAF. Indeed, the new class inherits the outstanding properties of wNAF, namely the required precomputation and the achieved non-zero density are exactly the same.
2003
ASIACRYPT