International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Kari Kostiainen

Publications

Year
Venue
Title
2017
CHES
Hacking in the Blind: (Almost) Invisible Runtime User Interface Attacks
We describe novel, adaptive user interface attacks, where the adversary attaches a small device to the interface that connects user input peripherals to the target system. The device executes the attack when the authorized user is performing safety-, or security-critical operations, by modifying or blocking user input, or injecting new events. Although the adversary fully controls the user input channel, to succeed he needs to overcome a number of challenges, including the inability to directly observe the state of the user interface and avoiding being detected by the legitimate user. We present new techniques that allow the adversary to do user interface state estimation and fingerprinting, and thus attack a new range of scenarios that previous UI attacks do not apply to. We evaluate our attacks on two different types of platforms: e-banking on general-purpose PCs, and dedicated medical terminals. Our evaluation shows that such attacks can be implemented efficiently, are hard for the users to detect, and would lead to serious violations of input integrity.
2015
EPRINT
2006
EPRINT
Secure Device Pairing based on a Visual Channel
Recently several researchers and practitioners have begun to address the problem of secure device pairing or how to set up secure communication between two devices without the assistance of a trusted third party. McCune, et al. [12] proposed Seeing-is-Believing (SiB), a system which uses a visual channel. The SiB visual channel consists of one device displaying the hash of its public key in the form of a two-dimensional barcode, and the other device reading this information using a photo camera. Strong mutual authentication in SiB requires running two separate unilateral authentication steps. In this paper, we show how strong mutual authentication can be achieved even with a unidirectional visual channel, where SiB could provide only a weaker property termed as presence. This could help reduce the SiB execution time and improve usability. By adopting recently proposed improved pairing protocols, we propose how visual channel authentication can be used even on devices that have very limited displaying capabilities, all the way down to a device whose display consists of a cheap single light-source, such as an LED. We also describe a new video codec that may be used to improve execution time of pairing in limited display devices, and can be used for other applications besides pairing.