International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

David Basin

Publications

Year
Venue
Title
2009
EPRINT
From Dolev-Yao to Strong Adaptive Corruption: Analyzing Security in the Presence of Compromising Adversaries
David Basin Cas J.F. Cremers
We formalize a hierarchy of adversary models for security protocol analysis, ranging from a Dolev-Yao style adversary to more powerful adversaries who can reveal different parts of principals' states during protocol execution. We define our hierarchy by a modular operational semantics describing adversarial capabilities. We use this to formalize various, practically-relevant notions of key and state compromise. We also use our semantics as a basis to extend an existing symbolic protocol-verification tool with our adversary models. This tool is the first that supports notions such as weak perfect forward secrecy, key compromise impersonation, and adversaries capable of so-called strong corruptions and state-reveal queries. As applications, we use our model hierarchy to relate different adversarial notions, gaining new insights on their relative strengths, and we use our tool find new attacks on protocols.
2006
EPRINT
Cryptographically Sound Theorem Proving
We describe a faithful embedding of the Dolev-Yao model of Backes, Pfitzmann, and Waidner (CCS 2003) in the theorem prover Isabelle/HOL. This model is cryptographically sound in the strong sense of reactive simulatability/UC, which essentially entails the preservation of arbitrary security properties under active attacks and in arbitrary protocol environments. The main challenge in designing a practical formalization of this model is to cope with the complexity of providing such strong soundness guarantees. We reduce this complexity by abstracting the model into a sound, light-weight formalization that enables both concise property specifications and efficient application of our proof strategies and their supporting proof tools. This yields the first tool-supported framework for symbolically verifying security protocols that enjoys the strong cryptographic soundness guarantees provided by reactive simulatability/UC. As a proof of concept, we have proved the security of the Needham-Schroeder-Lowe protocol using our framework.