International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Thomas Groß

Publications

Year
Venue
Title
2010
EPRINT
Credential Authenticated Identification and Key Exchange
Secure two-party authentication and key exchange are fundamental problems. Traditionally, the parties authenticate each other by means of their identities, using a public-key infrastucture (PKI). However, this is not always feasible or desirable: an appropriate PKI may not be available, or the parties may want to remain anonymous, and not reveal their identities. To address these needs, we introduce the notions of credential-authenticated identification (CAID) and key exchange (CAKE), where the compatibility of the parties' \emph{credentials} is the criteria for authentication, rather than the parties' \emph{identities} relative to some PKI. We formalize CAID and CAKE in the universal composability (UC) framework, with natural ideal functionalities, and we give practical, modularly designed protocol realizations. We prove all our protocols UC-secure in the adaptive corruption model with erasures, assuming a common reference string (CRS). The proofs are based on standard cryptographic assumptions and do not rely on random oracles. CAKE includes password-authenticated key exchange (PAKE) as a special case, and we present two new PAKE protocols. The first one is interesting in that it is uses completly different techniques than known practical PAKE protocols, and also achieves UC-security in the adaptive corruption model with erasures; the second one is the first practical PAKE protocol that provides a meaningful form of resilience against server compromise without relying on random oracles.
2010
EPRINT
Privacy-friendly Incentives and their Application to Wikipedia (Extended Version)
Double-blind peer review is a powerful method to achieve high quality and thus trustworthiness of user-contributed content. Facilitating such reviews requires incentives as well as privacy protection for the reviewers. In this paper, we present the concept of privacy-friendly incentives and discuss the properties required from it. We then propose a concrete cryptographic realization based on ideas from anonymous e-cash and credential systems. Finally, we report on our software's integration into the MediaWiki software.
2010
CRYPTO
2005
EPRINT
Browser Model for Security Analysis of Browser-Based Protocols
Currently, many industrial initiatives focus on web-based applications. In this context an important requirement is that the user should only rely on a standard web browser. Hence the underlying security services also rely solely on a browser for interaction with the user. Browser-based identity federation is a prominent example of such a protocol. Unfortunately, very little is still known about the security of browser-based protocols, and they seem at least as error-prone as standard security protocols. In particular, standard web browsers have limited cryptographic capabilities and thus new protocols are used. Furthermore, these protocols require certain care by the user in person, which must be modeled. In addition, browsers, unlike normal protocol principals, cannot be assumed to do nothing but execute the given security protocol. In this paper, we lay the theoretical basis for the rigorous analysis and security proofs of browser-based security protocols. We formally model web browsers, secure browser channels, and the security-relevant browsing behavior of a user as automata. As a first rigorous security proof of a browser-based protocol we prove the security of password-based user authentication in our model. This is not only the most common stand-alone type of browser authentication, but also a fundamental building block for more complex protocols like identity federation.