International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Kefei Chen

Affiliation: Hangzhou Normal University

Publications

Year
Venue
Title
2015
EPRINT
2015
EPRINT
2015
PKC
2010
EPRINT
CCA-Secure Unidirectional Proxy Re-Encryption in the Adaptive Corruption Model without Random Oracles
Proxy re-encryption (PRE), introduced by Blaze, Bleumer and Strauss in Eurocrypt'98, allows a semi-trusted proxy to convert a ciphertext originally intended for Alice into an encryption of the same message intended for Bob. PRE has recently drawn great interest, and many interesting PRE schemes have been proposed. However, up to now, it is still an important question to come up with a chosen-ciphertext secure unidirectional PRE in the adaptive corruption model. To address this problem, we propose a new unidirectional PRE scheme, and prove its chosen-ciphertext security in the adaptive corruption model without random oracles. Compared with the best known unidirectional PRE scheme proposed by Libert and Vergnaud in PKC'08, our schemes enjoys the advantages of both higher efficiency and stronger security.
2008
EPRINT
On the Design of Secure Double Block Length Hash Functions with Rate 1
Zheng Gong Xuejia Lai Kefei Chen
This paper reconsiders the security of the rate-1 double block length hash functions, which based on a block cipher with a block length of $n$-bit and a key length of $2n$-bit. Counter-examples and new attacks are presented on this general class of double block length hash functions with rate 1, which disclose there exist uncovered flaws in the former analysis given by Satoh \textit{et al.} and Hirose. Preimage and second preimage attacks are designed to break Hirose's two examples which were left as an open problem. Some refined conditions are proposed for ensuring this general class of the rate-1 hash functions to be optimally secure against the collision attack. In particular, two typical examples, which designed under the proposed conditions, are proven to be indifferentiable from the random oracle in the ideal cipher model. The security results are extended to a new class of double block length hash functions with rate 1, where one block cipher used in the compression function has the key length is equal to the block length, while the other is doubled.
2008
EPRINT
Democratic Group Signatures with Threshold Traceability
Recently, democratic group signatures(DGSs) particularly catch our attention due to their great flexibilities, \emph{i.e}., \emph{no group manager}, \emph{anonymity}, and \emph{individual traceability}. In existing DGS schemes, individual traceability says that any member in the group can reveal the actual signer's identity from a given signature. In this paper, we formally describe the definition of DGS, revisit its security notions by strengthening the requirement for the property of traceability, and present a concrete DGS construction with $(t, n)$-\emph{threshold traceability} which combines the concepts of group signatures and of threshold cryptography. The idea behind the $(t, n)$-threshold traceability is to distribute between $n$ group members the capability of tracing the actual signer such that any subset of not less than $t$ members can jointly reconstruct a secret and reveal the identity of the signer while preserving security even in the presence of an active adversary which can corrupt up to $t-1$ group members.
2008
EPRINT
Cryptanalysis of LU Decomposition-based Key Pre-distribution Scheme for Wireless Sensor Networks
S. J. Choi and H. Y. Youn proposed a key pre-distribution scheme for Wireless Sensor Networks based on LU decomposition of symmetric matrix, and later many researchers did works based on this scheme. Nevertheless, we find a mathematical relationship of L and U matrixes decomposed from symmetric matrix, by using which we can calculate one matrix from another regardless of their product -- the key matrix K. This relationship would profoundly harm the secure implementation of this decomposition scheme in the real world. In this paper, we first present and prove the mathematical theorem. Next we give samples to illustrate how to break the networks by using this theorem. Finally, we state the conclusion and some directions for improving the security of the key pre-distribution scheme.
2008
EPRINT
On the Design of Secure and Fast Double Block Length Hash Functions
Zheng Gong Xuejia Lai Kefei Chen
This paper reconsiders the security of the rate-1 double block length hash functions, which based on a block cipher with a block length of $n$-bit and a key length of $2n$-bit. Counter-examples and new attacks are presented on this general class of double block length hash functions with rate 1, which disclose there exist uncovered flaws in the former analysis given by Satoh \textit{et al.} and Hirose. Preimage and second preimage attacks are designed to break Hirose's two examples which were left as an open problem. Some refined conditions are proposed for ensuring this general class of the rate-1 hash functions to be optimally secure against the collision attack. In particular, two typical examples, which designed under the proposed conditions, are proven to be indifferentiable from the random oracle in the ideal cipher model. The security results are extended to a new class of double block length hash functions with rate 1, where one block cipher used in the compression function has the key length is equal to the block length, while the other is doubled.
2007
EPRINT
A Synthetic Indifferentiability Analysis of Block Cipher based Hash Functions
Zheng Gong Xuejia Lai Kefei Chen
Nowadays, investigating what construction is better to be a cryptographic hash function is red hot. In TCC'04, Maurer et al. first introduced the notion of indifferentiability as a generalization of the concept of the indistinguishability of two cryptosystems. In AsiaCrypt 06, Chang et al. analyzed the indifferentiability security of some popular block-cipher-based hash functions, such as PGV constructions and MDC-2. In this paper, we investigate Chang et al.'s analysis of PGV constructions and the PBGV double block length constructions. In particular, we point out a more precise adversarial advantage of indifferentiability, by considering the two situations that whether the hash function is either keyed or not. Furthermore, Chang et al. designed attacks on 4 PGV hash functions and PBGV hash function to prove they are differentiable from random oracle with prefix-free padding. We find a limitation in their differentiable attacks and construct our simulations to obtain the controversy results that those schemes are indifferentiable from random oracle with prefix-free padding and some other popular constructions.
2006
ASIACRYPT
2006
EPRINT
Analysis and Improvements of Two Identity-Based Perfect Concurrent Signature Schemes
The notion of concurrent signatures was introduced by Chen, Kudla and Paterson in their seminal paper in Eurocrypt 2004. In concurrent signature schemes, two entities can produce two signatures that are not binding, until an extra piece of information (namely the keystone) is released by one of the parties. Upon release of the keystone, both signatures become binding to their true signers concurrently. In ICICS 2005, two identity-based perfect concurrent signature schemes were proposed by Chow and Susilo. In this paper, we show that these two schemes are unfair, in which the initial signer can cheat the matching signer. We present a formal definition of ID-based concurrent signatures which redress the flaw of Chow et al.'s definition and then propose two simple but significant improvements to fix our attacks.
2004
EPRINT
Cryptanalysis of a timestamp-based password authentication scheme
Lizhen Yang Kefei Chen
Recently, J.-J. Shen, C.-W. Lin and M.-S. Hwang (Computers & Security, Vol 22, No 7, pp 591-595, 2003) proposed a modified Yang-Shieh scheme to enhance security. They claimed that their modified scheme can withstand the forged login attack and also provide a mutual authentication method to prevent the forged server attack. In this paper, we show that the Shen-Lin-Hwang scheme cannot resist the forged login attack either. The intruder is able to forge a valid forge request of a legitimate user Ui and then successfully impersonate him by intercepting a login request sent by Ui and registering a smart card.
2004
EPRINT
Yet another attack on a password authentication scheme based on quadratic residues with parameters unknown 1
In 1988, Harn, Laih and Huang proposed a password authentication scheme based on quadratic residues. However, in 1995, Chang, Wu and Laih pointed out that if the parameters d b a , , and l are known by the intruder, this scheme can be broken. In this paper, we presented another attack on the Harn-Laih-Huang scheme. In our attack, it doesn’t need to know the parameters and it is more efficient than the Chang-Wu-Laih attack.
2004
EPRINT
Asynchronous Proactive RSA
Ruishan Zhang Kefei Chen
Nowadays, to model practical systems better, such as the Internet network and ad hoc networks, researchers usually regard these systems as asynchronous networks. Meanwhile, proactive secret sharing schemes are often employed to tolerate a mobile adversary. Considering both aspects, an asynchronous proactive threshold signature scheme is needed to keep computer systems secure. So far, two asynchronous proactive secret sharing schemes have been proposed. One is proposed by Zhou in 2001, which is for RSA schemes. The other scheme is proposed by Cachin in 2002, which is a proactive secret sharing scheme for discrete-log schemes. There exist several drawbacks in both schemes. In Zhou??s scheme, the formal security proof of this scheme is missing. Furthermore, Zhou??s scheme needs to resort to the system administrator as the trusted third party for further run when some Byzantine errors occur. In Cachin??s scheme, the building block is based on the threshold RSA scheme proposed by Shoup. However, how to proactivize Shoup??s scheme is omitted in Cachin??s scheme, so this scheme is incomplete. In this paper, we present a complete provably secure asynchronous proactive RSA scheme (APRS). Our paper has four contributions. Firstly, we present a provably secure asynchronous verifiable secret sharing for RSA schemes (asynchronous verifiable additive secret sharing, AVASS), which is based on a verifiable additive secret sharing over integers. Secondly, we propose an asynchronous threshold RSA signature scheme that is based on the AVASS scheme and the random oracle model, and is capable of being proactivized. Thirdly, we present a provably secure threshold coin-tossing scheme on the basis of the above threshold RSA scheme. Fourthly, we propose an asynchronous proactive secret sharing based on the threshold RSA scheme and the coin-tossing scheme. Finally, combining the proactive secret sharing scheme and the threshold RSA scheme, we achieve a complete provably secure asynchronous proactive RSA scheme.
2003
EPRINT
Cryptanalysis of B.Lee-S.Kim-K.Kim Proxy Signature
Kefei Chen Zheng Dong Shengli Liu
Blind signature is the concept to ensure anonymity of e-cion. Untracebility and unlinkability are two main properties of real coin, which require mimicking electronically. Proxy signature schemes allow a proxy signer to generate a proxy signature on behalf of an original signer.All the previous proxy signature schemes are based on ElGamal-type schemes.In this paper, we propose a new proxy blind signature scheme based on an ID-based signature scheme, which uses bilinear pairings of elliptic curves or hyperelliptic curves.
2003
EPRINT
an attack on a multisignature scheme
Kefei Chen Zheng Dong
In this letter, we show that structured ElGamal-type multisignature scheme due to Burmester et al. is not secure if the adversary attacks key generation.