International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Edlyn Teske

Publications

Year
Venue
Title
2010
JOFC
2007
EPRINT
On prime-order elliptic curves with embedding degrees k=3,4 and 6
Koray Karabina Edlyn Teske
We further analyze the solutions to the Diophantine equations from which prime-order elliptic curves of embedding degrees $k=3,4$ or $6$ (MNT curves) may be obtained. We give an explicit algorithm to generate such curves. We derive a heuristic lower bound for the number $E(z)$ of MNT curves with $k=6$ and discriminant $D\le z$, and compare this lower bound with experimental data.
2006
JOFC
2006
EPRINT
A taxonomy of pairing-friendly elliptic curves
Elliptic curves with small embedding degree and large prime-order subgroup are key ingredients for implementing pairing-based cryptographic systems. Such "pairing-friendly" curves are rare and thus require specific constructions. In this paper we give a single coherent framework that encompasses all of the constructions of pairing-friendly elliptic curves currently existing in the literature. We also include new constructions of pairing-friendly curves that improve on the previously known constructions for certain embedding degrees. Finally, for all embedding degrees up to 50, we provide recommendations as to which pairing-friendly curves to choose to best satisfy a variety of performance and security requirements.
2004
EPRINT
Cryptographic Implications of Hess' Generalized GHS Attack
Alfred Menezes Edlyn Teske
A finite field K is said to be weak for elliptic curve cryptography if all instances of the discrete logarithm problem for all elliptic curves over K can be solved in significantly less time than it takes Pollard's rho method to solve the hardest instances. By considering the GHS Weil descent attack, it was previously shown that characteristic two finite fields GF(q^5) are weak. In this paper, we examine characteristic two finite fields GF(q^n) for weakness under Hess' generalization of the GHS attack. We show that the fields GF(q^7) are potentially partially weak in the sense that any instance of the discrete logarithm problem for half of all elliptic curves over GF(q^7), namely those curves E for which #E is divisible by 4, can likely be solved in significantly less time than it takes Pollard's rho method to solve the hardest instances. We also show that the fields GF(q^3) are partially weak, that the fields GF(q^6) are potentially weak, and that the fields GF(q^8) are potentially partially weak. Finally, we argue that the other fields GF(2^N) where N is not divisible by 3, 5, 6, 7 or 8, are not weak under Hess' generalized GHS attack.
2003
EPRINT
An Elliptic Curve Trapdoor System
Edlyn Teske
We propose an elliptic curve trapdoor system which is of interest in key escrow applications. In this system, a pair ($E_{\rm s}, E_{\rm pb}$) of elliptic curves over $\F_{2^{161}}$ is constructed with the following properties: (i) the Gaudry-Hess-Smart Weil descent attack reduces the elliptic curve discrete logarithm problem (ECDLP) in $E_{\rm s}(\F_{2^{161}})$ to a hyperelliptic curve DLP in the Jacobian of a curve of genus 7 or 8, which is computationally feasible, but by far not trivial; (ii) $E_{\rm pb}$ is isogenous to $E_{\rm s}$; (iii) the best attack on the ECDLP in $E_{\rm pb}(\F_{2^{161}})$ is the parallelized Pollard rho method.\\ The curve $E_{\rm pb}$ is used just as usual in elliptic curve cryptosystems. The curve $E_{\rm s} is submitted to a trusted authorityfor the purpose of key escrow. The crucial difference from other key escrow scenarios is that the trusted authority has to invest a considerable amount of computation to compromise a user's private key, which makes applications such as widespread wire-tapping impossible.
2003
EPRINT
Weak Fields for ECC
We demonstrate that some finite fields, including GF(2^210) are weak for elliptic curve cryptography in the sense that any instance of the elliptic curve discrete logarithm problem for any elliptic curve over these fields can be solved in significantly less time than it takes Pollard's rho method to solve the hardest instances. We discuss the implications of our observations to elliptic curve cryptography, and list some open problems.
2002
EPRINT
On some Attacks on Multi-prime RSA
Using more than two factors in the modulus of the RSA cryptosystem has the arithmetic advantage that the private key computations can be speeded up using Chinese remaindering. At the same time, with a proper choice of parameters, one does not have to work with a larger modulus to achieve the same level of security in terms of the difficulty of the integer factorization problem. However, numerous attacks on specific instances on the RSA cryptosystem are known that apply if, for example, the decryption or encryption exponent are chosen too small, or if partial knowledge of the private key is available. Little work is known on how such attacks perform in the multi-prime case. It turns out that for most of these attacks it is crucial that the modulus contains exactly two primes. They become much less effective, or fail, when the modulus factors into more than two distinct primes.
2001
EPRINT
Analysis of the GHS Weil Descent Attack on the ECDLP over Characteristic Two Finite Fields of Composite Degree
In this paper, we analyze the Gaudry-Hess-Smart (GHS) Weil descent attack on the elliptic curve discrete logarithm problem (ECDLP) for elliptic curves defined over characteristic two finite fields of composite extension degree. For each such field $F_{2^N}$, $N \in [100,600]$, we identify elliptic curve parameters such that (i) there should exist a cryptographically interesting elliptic curve $E$ over $F_{2^N}$ with these parameters; and (ii) the GHS attack is more efficient for solving the ECDLP in $E(F_{2^N})$ than for solving the ECDLP on any other cryptographically interesting elliptic curve over $F_{2^N}$. We examine the feasibility of the GHS attack on the specific elliptic curves over $F_{2^{176}}$, $F_{2^{208}}$, $F_{2^{272}}$, $F_{2^{304}}$, and $F_{2^{368}}$ that are provided as examples inthe ANSI X9.62 standard for the elliptic curve signature scheme ECDSA. Finally, we provide several concrete instances of the ECDLP over $F_{2^N}$, $N$ composite, of increasing difficulty which resist all previously known attacks but which are within reach of the GHS attack.

Program Committees

PKC 2011
PKC 2008
Crypto 2006
PKC 2006
PKC 2005
Eurocrypt 2004