International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Jens-Matthias Bohli

Affiliation: NEC Laboratories Europe

Publications

Year
Venue
Title
2007
TCC
2007
EPRINT
Bingo Voting: Secure and coercion-free voting using a trusted random number generator
Jens-Matthias Bohli Jörn Müller-Quade Stefan Roehrich
It is debatable if current direct-recording electronic voting machines can sufficiently be trusted for a use in elections. Reports about malfunctions and possible ways of manipulation abound. Voting schemes have to fulfill seemingly contradictory requirements: On one hand the election process should be verifiable to prevent electoral fraud and on the other hand each vote should be deniable to avoid coercion and vote buying. This work presents a new verifiable and coercion-free voting scheme Bingo Voting, which is based on a trusted random number generator. As a motivation for the new scheme two coercion/vote buying attacks on voting schemes are presented which show that it can be dangerous to let the voter contribute randomness to the voting scheme. A proof-of-concept implementation of the scheme shows the practicality of the scheme: all costly computations can be moved to a non time critical pre-voting phase.
2006
EPRINT
Towards Provably Secure Group Key Agreement Building on Group Theory
Jens-Matthias Bohli Benjamin Glas Rainer Steinwandt
Known proposals for key establishment schemes based on combinatorial group theory are often formulated in a rather informal manner. Typically, issues like the choice of a session identifier and parallel protocol executions are not addressed, and no security proof in an established model is provided. Successful attacks against proposed parameter sets for braid groups further decreased the attractivity of combinatorial group theory as a candidate platform for cryptography. We present a 2-round group key agreement protocol that can be proven secure in the random oracle model if a certain group-theoretical problem is hard. The security proof builds on a framework of Bresson et al., and explicitly addresses some issues concerning malicious insiders and also forward secrecy. While being designed as a tool for basing group key agreement on non-abelian groups, our framework also yields a 2-round group key agreement basing on a Computational Diffie-Hellman assumption.
2006
EPRINT
Password-Authenticated Constant-Round Group Key Establishment with a Common Reference String
A provably secure password-authenticated protocol for group key establishment in the common reference string (CRS) model is presented. Our construction assumes the participating users to share a common password and combines smooth hashing as introduced by Cramer and Shoup with a construction of Burmester and Desmedt. Our protocol is constant-round. Namely, it is a three-round protocol that can be seen as generalization of a two-party proposal of Gennaro and Lindell.
2005
EPRINT
Burmester-Desmedt Tree-Based Key Transport Revisited: Provable Security
A tree-based key transport protocol is presented which can be seen as a generalizing variant of the star- and tree-based protocols proposed by Burmester and Desmedt at EUROCRYPT '94. Our scheme does not rely on the availability of globally verifiable signatures or arbitrary point-to-point connections, and its security against active adversaries is proven in the standard model under the Decision Diffie Hellman assumption.
2005
EPRINT
Secure Group Key Establishment Revisited
We examine the popular proof models for group key establishment of Bresson et al. and point out missing security properties that are present in some models for two-party key establishment. These properties are actually of more importance in group key establishments due to the possibility of malicious insiders. We show that established group key establishment schemes from CRYPTO 2003 and ASIACRYPT 2004 do not fully meet these new requirements. Next to giving a formal definition of these extended security properties, we prove a variant of the explored proposal from ASIACRYPT 2004 secure in this stricter sense.
2002
EPRINT
Weak Keys in MST1
The public key cryptosystem $MST_1$ has been introduced in~\cite{MaStTr00}. Its security relies on the hardness of factoring with respect to wild logarithmic signatures. To identify `wild-like' logarithmic signatures, the criterion of being totally-non-transversal has been proposed. We give tame totally-non-transversal logarithmic signatures for the alternating and symmetric groups of degree $\ge 5$. Hence, basing a key generation procedure on the assumption that totally-non-transversal logarithmic signatures are `wild like' seems critical. We also discuss the problem of recognizing `weak' totally-non-transversal logarithmic signatures, and demonstrate that another proposed key generation procedure based on permutably transversal logarithmic signatures may produce weak keys.