International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Sven Laur

Affiliation: University of Tartu

Publications

Year
Venue
Title
2014
EPRINT
2014
EPRINT
2010
PKC
2008
PKC
2008
EPRINT
Sharemind: a framework for fast privacy-preserving computations
Gathering and processing sensitive data is a difficult task. In fact, there is no common recipe for building the necessary information systems. In this paper, we present a provably secure and efficient general-purpose computation system to address this problem. Our solution - SHAREMIND - is a virtual machine for privacy-preserving data processing that relies on share computing techniques. This is a standard way for securely evaluating functions in a multi-party computation environment. The novelty of our solution is in the choice of the secret sharing scheme and the design of the protocol suite. We have made many practical decisions to make large-scale share computing feasible in practice. The protocols of SHAREMIND are information-theoretically secure in the honest-but-curious model with three computing participants. Although the honest-but-curious model does not tolerate malicious participants, it still provides significantly increased privacy preservation when compared to standard centralised databases.
2007
PKC
2007
EPRINT
Knowledge-Binding Commitments with Applications in Time-Stamping (Full Version)
Ahto Buldas Sven Laur
We prove in a non-black-box way that every bounded list and set commitment scheme is knowledge-binding. This is a new and rather strong security condition, which makes the security definitions for time-stamping much more natural compared to the previous definitions, which assume unpredictability of adversaries. As a direct consequence, list and set commitment schemes with partial opening property are sufficient for secure time-stamping if the number of elements has an explicit upper bound N. On the other hand, white-box reductions are in a sense strictly weaker than black-box reductions. Therefore, we also extend and generalize the previously known reductions. The corresponding new reductions are Theta(sqrt(N)) times more efficient, which is important for global-scale time-stamping schemes where N is very large.
2006
EPRINT
On the Feasibility of Consistent Computations
Sven Laur Helger Lipmaa
In many practical settings, participants are willing to deviate from the protocol only if they remain undetected. Aumann and Lindell introduced a concept of covert adversaries to formalize this type of corruption. In the current paper, we refine their model to get stronger security guarantees. Namely, we show how to construct protocols, where malicious participants cannot learn anything beyond their intended outputs and honest participants can detect malicious behavior that alters their outputs. As this construction does not protect honest parties from selective protocol failures, a valid corruption complaint can leak a single bit of information about the inputs of honest parties. Importantly, it is often up to the honest party to decide whether to complain or not. This potential leakage is often compensated by gains in efficiency---many standard zero-knowledge proof steps can be omitted. As a concrete practical contribution, we show how to implement consistent versions of several important cryptographic protocols such as oblivious transfer, conditional disclosure of secrets and private inference control.
2006
EPRINT
Cryptographically Private Support Vector Machines
We study the problem of private classification using kernel methods. More specifically, we propose private protocols implementing the Kernel Adatron and Kernel Perceptron learning algorithms, give private classification protocols and private polynomial kernel computation protocols. The new protocols return their outputs---either the kernel value, the classifier or the classifications---in encrypted form so that they can be decrypted only by a common agreement by the protocol participants. We also show how to use the encrypted classifications to privately estimate many properties of the data and the classifier. The new SVM classifiers are the first to be proven private according to the standard cryptographic definitions.
2006
EPRINT
Black-Box Knowledge Extraction Revisited: Universal Approach with Precise Bounds
Rewinding techniques form the essence of many security reductions including proofs for identification and signature schemes. We propose a simple and modular approach for the construction of such proofs. Straightforward applications of our central result include, but are not limited to, the security of identification schemes, generic signatures and ring signatures. These results are well known, however, we generalise them in such a way that our technique can be used off-the-shelf for future applications. We note that less is more: as a side-effect of our less complex analysis, all our proofs are more precise; for example, we get a new proof of the forking lemma that is $2^{15}$ times more precise than the original result by Pointcheval and Stern. Finally, we give the first precise security analysis of Blum's coin flipping protocol with $k$-bit strings, as yet another example of the strength of our results.
2005
EPRINT
A New Protocol for Conditional Disclosure of Secrets And Its Applications
Sven Laur Helger Lipmaa
Many protocols that are based on homomorphic encryption are private only if a client submits inputs from a limited range $S$. Conditional disclosure of secrets (CDS) helps to overcome this restriction. In a CDS protocol for a set $S$, the client obtains server's secret if and only if the client's inputs belong to $S$ and thus the server can guard itself against malformed queries. We extend the existing CDS protocols to work over additively homomorphic cryptosystems for every set from $NP/poly$. The new construction is modular and easy to apply. As an example, we derive a new oblivious transfer protocol with log-squared communication and a millionaire's protocol with logarithmic communication. We also implement private, universally verifiable and robust multi-candidate electronic voting so that all voters only transmit an encryption of their vote. The only hardness assumption in all these protocols is that the underlying public-key cryptosystem is IND-CPA secure and the plaintext order does not have small factors.
2005
EPRINT
Efficient Mutual Data Authentication Using Manually Authenticated Strings
Solutions for an easy and secure setup of a wireless connection between two devices are urgently needed for WLAN, Wireless USB, Bluetooth and similar standards for short range wireless communication. In this paper we analyse the SAS protocol by Vaudenay and propose a new three round protocol MA-3 for mutual data authentication based on a cryptographic commitment scheme and short manually authenticated out-of-band messages. We show that non-malleability of the commitment scheme is essential for the security of the SAS and the MA-3 schemes and that extractability or equivocability do not imply non-malleability. We also give new proofs of security for the SAS and MA-3 protocols and suggestions how to instantiate the MA-3 protocol in practise.