International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Liqun Chen

Publications

Year
Venue
Title
2015
EPRINT
2010
EPRINT
A DAA Scheme Requiring Less TPM Resources
Liqun Chen
Direct anonymous attestation (DAA) is a special digital signature primitive, which provides a balance between signer authentication and privacy. One of the most interesting properties that makes this primitive attractive in practice is its construction of signers. The signer role of DAA is split between two entities, a principal signer (a trusted platform module (TPM)) with limited computational capability and an assistant signer (a computer platform into which the TPM is embedded) with more computational power but less security tolerance. Our first contribution in this paper is a new DAA scheme that requires very few TPM resources. In fact the TPM has only to perform two exponentiations for the DAA Join algorithm and three exponentiations for the DAA Signing algorithm. We show that this new scheme has better performance than the existing DAA schemes and is provable secure based on the $q$-SDH problem and DDH problem under the random oracle model. Our second contribution is a modification of the DAA game-based security model to cover the property of non-frameability.
2009
ASIACRYPT
2008
EPRINT
Simplified Security Notions of Direct Anonymous Attestation and a Concrete Scheme from Pairings
Direct Anonymous Attestation (DAA) is a cryptographic mechanism that enables remote authentication of a user while preserving privacy under the user's control. The DAA scheme developed by Brickell, Camenisch, and Chen has been adopted by the Trust Computing Group (TCG) for remote anonymous attestation of Trusted Platform Module (TPM), a small hardware device with limited storage space and communication capability. In this paper, we provide two contributions to DAA. We first introduce simplified security notions of DAA including the formal definitions of user controlled anonymity and traceability. We then propose a new DAA scheme from elliptic curve cryptography and bilinear maps. The lengths of private keys and signatures in our scheme are much shorter than the lengths in the original DAA scheme, with a similar level of security and computational complexity. Our scheme builds upon the Camenisch-Lysyanskaya signature scheme and is efficient and provably secure in the random oracle model under the LRSW (stands for Lysyanskaya, Rivest, Sahai and Wolf) assumption and the decisional Bilinear Diffie-Hellman assumption.
2007
EPRINT
Bilateral Unknown Key-Share Attacks in Key Agreement Protocols
Liqun Chen Qiang Tang
Unknown Key-Share (UKS) resilience is a basic security attribute in authenticated key agreement protocols, whereby two entities A and B should not be able to be coerced into sharing a key between them when in fact either A or B thinks that s/he is sharing the key with another entity C. In this paper we revisit some definitions of this attribute, the existing UKS attacks and the method of proving this attribute in the Bellare-Rogaway (BR) model in the literature. We propose a new UKS attack, which coerces two entities A and B into sharing a key with each other but in fact A thinks that she is sharing the key with another entity C and B thinks that he is sharing the key with another entity D, where C and D might or might not be the same entity. We call this attack a Bilateral Unknown Key-Share(BUKS) attack and refer to the existing UKS attacks, which are against one entity only, as a Unilateral UKS (UUKS) attack. We demonstrate that a few well-known authenticated key agreement protocols, some of which have been proved holding the UUKS resilience property, are vulnerable to the BUKS attack. We then explore a gap between the traditional BR-type proof of UUKS resilience and a BUKS adversary's behaviour, and extend the BR model to cover the BUKS resilience attribute. Finally we provide a simple countermeasure to prevent a key agreement protocol from BUKS attacks.
2006
EPRINT
A Built-in Decisional Function and Security Proof of ID-based Key Agreement Protocols from Pairings
In recent years, a large number of identity-based key agreement protocols from pairings have been proposed. Some of them are elegant and practical. However, the security of this type of protocols has been surprisingly hard to prove. The main issue is that a simulator is not able to deal with reveal queries, because it requires solving either a computational problem or a decisional problem, both of which are generally believed to be hard (i.e., computationally infeasible). The best solution of security proof published so far uses the gap assumption, which means assuming that the existence of a decisional oracle does not change the hardness of the corresponding computational problem. The disadvantage of using this solution to prove the security for this type of protocols is that such decisional oracles, on which the security proof relies, cannot be performed by any polynomial time algorithm in the real world, because of the hardness of the decisional problem. In this paper we present a method incorporating a built-in decisional function in this type of protocols. The function transfers a hard decisional problem in the proof to an easy decisional problem. We then discuss the resulting efficiency of the schemes and the relevant security reductions in the context of different pairings one can use.
2006
EPRINT
Identity-based Key Agreement Protocols From Pairings
In recent years, a large number of identity-based key agreement protocols from pairings have been proposed. Some of them are elegant and practical. However, the security of this type of protocols has been surprisingly hard to prove. The main issue is that a simulator is not able to deal with reveal queries, because it requires solving either a computational problem or a decisional problem, both of which are generally believed to be hard (i.e., computationally infeasible). The best solution of security proof published so far uses the gap assumption, which means assuming that the existence of a decisional oracle does not change the hardness of the corresponding computational problem. The disadvantage of using this solution to prove the security for this type of protocols is that such decisional oracles, on which the security proof relies, cannot be performed by any polynomial time algorithm in the real world, because of the hardness of the decisional problem. In this paper we present a method incorporating a built-in decisional function in this type of protocols. The function transfers a hard decisional problem in the proof to an easy decisional problem. We then discuss the resulting efficiency of the schemes and the relevant security reductions in the context of different pairings one can use. We pay particular attention, unlike most other papers in the area, to the issues which arise when using asymmetric pairings.
2005
PKC
2005
EPRINT
Weaknesses in two group Diffie-Hellman key exchange protocols
Qiang Tang Liqun Chen
In this paper we show that the password-based Diffie-Hellman key exchange protocols due to Byun and Lee suffer from dictionary attacks.
2005
EPRINT
On Security Proof of McCullagh-Barreto's Key Agreement Protocol and its Variants
Zhaohui Cheng Liqun Chen
McCullagh and Barreto presented an identity-based authenticated key agreement protocol in CT-RSA 2005. Their protocol was found to be vulnerable to a key-compromise impersonation attack. In order to recover the weakness, McCullagh and Barreto, and Xie proposed two variants of the protocol respectively. In each of these works, a security proof of the proposed protocol was presented. In this paper, we revisit these three security proofs and show that all the reductions in these proofs are invalid, because the property of indistinguishability between their simulation and the real world was not held. As a replacement, we slightly modify the McCullagh and Barreto's second protocol and then formally analyse the security of the modified scheme in the Bellare-Rogaway key agreement model.
2005
EPRINT
An Efficient ID-KEM Based On The Sakai-Kasahara Key Construction
We describe an identity based key encapsulation mechanism (ID-KEM). It is possible to use this ID-KEM to build a secure identity based encryption scheme using the techniques of Bentahar et al. The resulting encryption scheme has a number of performance advantages over existing methods.
2005
EPRINT
Security Proof of Sakai-Kasahara's Identity-Based Encryption Scheme
Liqun Chen Zhaohui Cheng
Identity-based encryption (IBE) is a special asymmetric encryption method where a public encryption key can be an arbitrary identifier and the corresponding private decryption key is created by binding the identifier with a system's master secret. In 2003 Sakai and Kasahara proposed a new IBE scheme, which has the potential to improve performance. However, to our best knowledge, the security of their scheme has not been properly investigated. This work is intended to build confidence in the security of the Sakai-Kasahara IBE scheme. In this paper, we first present an efficient IBE scheme that employs a simple version of the Sakai-Kasahara scheme and the Fujisaki-Okamoto transformation, which we refer to as SK-IBE. We then prove that SK-IBE has chosen ciphertext security in the random oracle model based on a reasonably well-explored hardness assumption.
2005
EPRINT
Identity-Based Key Agreement with Unilateral Identity Privacy Using Pairings
In most of the existing identity-based key agreement schemes, it is usually assumed that either the communicated parties know each other's identifier before the protocol starts or their identifiers are transferred along with the protocol messages. However, these schemes are not suitable for use in many real-world applications aimed to achieve unilateral identity privacy, which means that one communicating party does not want to expose his identifier to an outsider while his partner cannot know his identifier in advance. In this paper, we propose an efficient identity-based two-party key agreement scheme with unilateral identity privacy using pairing, and formally analyze its security in a modified Bellare-Rogaway key agreement security model.
2004
EUROCRYPT
2004
EPRINT
Improved Identity-Based Signcryption
Liqun Chen John Malone-Lee
We present an identity-based signcryption scheme that we believe is the most efficient proposed to date. We provide random oracle model~\cite{ROP} proofs of security under the definitions proposed in~\cite{MIBS}
2004
EPRINT
Direct Anonymous Attestation
This paper describes the direct anonymous attestation scheme (DAA). This scheme was adopted by the Trusted Computing Group as the method for remote authentication of a hardware module, called trusted platform module (TPM), while preserving the privacy of the user of the platform that contains the module. Direct anonymous attestation can be seen as a group signature without the feature that a signature can be opened, i.e., the anonymity is not revocable. Moreover, DAA allows for pseudonyms, i.e., for each signature a user (in agreement with the recipient of the signature) can decide whether or not the signature should be linkable to another signature. DAA furthermore allows for detection of ``known'' keys: if the DAA secret keys are extracted from a TPM and published, a verifier can detect that a signature was produced using these secret keys. The scheme is provably secure in the random oracle model under the strong RSA and the decisional Diffie-Hellman assumption.
2002
EPRINT
Identity Based Authenticated Key Agreement Protocols from Pairings
Liqun Chen Caroline Kudla
We investigate a number of issues related to identity based authenticated key agreement protocols using the Weil or Tate pairings. These issues include how to make protocols efficient; how to avoid key escrow by a Trust Authority (TA) who issues identity based private keys for users, and how to allow users to use different Trusted Authorities. We describe a few authenticated key agreement (AK) protocols and AK with key confirmation (AKC) protocols which are modified from Smart's AK protocol. We study the security of these protocols heuristically and using provable security methods. In addition, we prove that our AK protocol is immune to key compromise impersonation attacks, and we also show that our second protocol has the TA forward secrecy property (which we define to mean that the compromise of the TA's private key will not compromise previously established session keys). We also show that this TA forward secrecy property implies that the protocol has the perfect forward secrecy property.
1998
ASIACRYPT

Program Committees

PKC 2020
Eurocrypt 2015
Eurocrypt 2006
Asiacrypt 2004