International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Cheng-Kang Chu

Publications

Year
Venue
Title
2010
EPRINT
Practical ID-based Encryption for Wireless Sensor Network
In this paper, we propose a new practical identity-based encryption scheme which is suitable for wireless sensor network (WSN). We call it \textit{Receiver-Bounded Online/Offline Identity-based Encryption} (RB-OOIBE). It splits the encryption process into two parts -- the offline and the online part. In the offline part, all heavy computations are done without the knowledge of the receiver's identity and the plaintext message. In the online stage, only light computations such as modular operation and symmetric key encryption are required, together with the receiver's identity and the plaintext message. Moreover, since each offline ciphertext can be re-used for the same receiver, the number of offline ciphertexts the encrypter holds only confines the number of receivers instead of the number of messages to be encrypted. In this way, a sensor node (with limited computation power and limited storage) in WSN can send encrypted data easily: A few offline ciphertexts can be computed in the manufacturing stage while the online part is light enough for the sensor to process. We propose an efficient construction for this new notion. The scheme can be proven selective-ID CCA secure in the standard model. Compared to previous online/offline identity-based encryption schemes, our scheme is exempt from a high storage requirement, which is proportional to the number of messages to be sent. The improvement is very significant if many messages are sent to few receivers.
2007
EPRINT
Identity-Committable Signatures and Their Extension to Group-Oriented Ring Signatures
Cheng-Kang Chu Wen-Guey Tzeng
The identity of "Deep Throat", a pseudonym of the information source in the Watergate scandal, remained mysterious for more than three decades. In 2005, an ex-FBI official claimed that he was the anonymous source. Nevertheless, some are still inconvinced. In this paper, we introduce a new notion of identity-committable signatures (ICS) to ensure the anonymity of "Deep Throat" inside a group. A member of an organization can sign a message on behalf of himself (regular signature) or the organization (identity-committed signature). In the latter case, the signer's identity is hidden from anyone, and can be opened by himself only. We describe the requirements of ICS and give the formal definition of it. Then we extend the notion of ICS to group-oriented ring signatures (GRS) which further allow the signer to hide his identity behind multiple groups. We believe a GRS scheme is more efficient and practical than a ring signature scheme for leaking secrets. Finally, we provide concrete constructions of ICS and GRS with information-theoretic anonymity, that is, the identity of the signer is fully-protected.
2006
PKC
2005
PKC
2004
EPRINT
Efficient k-out-of-n Oblivious Transfer Schemes with Adaptive and Non-Adaptive Queries
Cheng-Kang Chu Wen-Guey Tzeng
In this paper we propose a very efficient two-round k-out-of-n oblivious transfer scheme, in which R sends O(k) messages to S, and S sends O(n) messages back to R. The computation cost of R and S is reasonable as R needs O(k) operations and S needs O(n)operations. The choices of R are unconditionally secure and the secrecy of unchosen messages is guaranteed as well if the decisional bilinear Diffie-Hellman problem is hard. When k=1, our scheme is as efficient as the most efficient 1-out-of-n oblivious transfer scheme up to now. Our scheme has the nice property of universal parameters. That is, each pair of R and S need neither hold any secret key nor perform any prior setup. The system parameters can be used by all senders and receivers without any trapdoor specification. Our k-out-of-n oblivious transfer scheme is the most efficient one in terms of the communication cost, in both rounds and the number of messages. Moreover, our scheme can be extended in a straightforward way to an adaptive k-out-of-n oblivious transfer scheme, which allows the receiver R to choose the secrets one by one adaptively. In our scheme, S sends O(n) messages to R in one round in the commitment phase. For each query of R, only O(1) messages are exchanged and O(1) operations (in elliptic curves) are performed. In fact, the number k of queries need not be pre-fixed or known beforehand. This makes our scheme highly flexible.
2003
EPRINT
A Threshold GQ Signature Scheme
Cheng-Kang Chu Li-Shan Liu Wen-Guey Tzeng
We proposed the first threshold GQ signature scheme. The scheme is unforgeable and robust against any adaptive adversary if the base GQ signature scheme is unforgeable under the chosen message attack and computing the discrete logarithm modulo a safe prime is hard. Our scheme achieve optimal resilience, that is, the adversary can corrupt up to a half of the players. As an extension of our work, we proposed a threshold forward-secure signature scheme, which is the threshold version of the most efficient forward-secure signature scheme up to now.