International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

David A. McGrew

Publications

Year
Venue
Title
2014
EPRINT
2014
FSE
2007
EPRINT
The Security of the Extended Codebook (XCB) Mode of Operation
David A. McGrew Scott R. Fluhrer
The XCB mode of operation was outlined in 2004 as a contribution to the IEEE Security in Storage effort, but no security analysis was provided. In this paper, we provide a proof of security for XCB, and show that it is a secure tweakable (super) pseudorandom permutation. Our analysis makes several new contributions: it uses an algebraic property of XCB's internal universal hash function to simplify the proof, and it defines a nonce mode in which XCB can be securely used even when the plaintext is shorter than twice the width of the underlying block cipher. We also show minor modifications that improve the performance of XCB and make it easier to analyze. XCB is interesting because it is highly efficient in both hardware and software, it has no alignment restrictions on input lengths, it can be used in nonce mode, and it uses the internal functions of the Galois/Counter Mode (GCM) of operation, which facilitates design re-use and admits multi-purpose implementations.
2005
EPRINT
Multiple forgery attacks against Message Authentication Codes
David A. McGrew Scott R. Fluhrer
Some message authentication codes (MACs) are vulnerable to multiple forgery attacks, in which an attacker can gain information that allows her to succeed in forging multiple message/tag pairs. This property was first noted in MACs based on universal hashing, such as the Galois/Counter Mode (GCM) of operation for block ciphers. However, we show that CBC-MAC and HMAC also have this property, and for some parameters are more vulnerable than GCM. We present multiple-forgery attacks against these algorithms, then analyze the security against these attacks by using the expected number of forgeries. We compare the different MACs using this measure. This document is a pre-publication draft manuscript.
2004
EPRINT
The Security and Performance of the Galois/Counter Mode of Operation (Full Version)
David A. McGrew John Viega
The recently introduced Galois/Counter Mode (GCM) of operation for block ciphers provides both encryption and message authentication, using universal hashing based on multiplication in a binary finite field. We analyze its security and performance, and show that it is the most efficient mode of operation for high speed packet networks, by using a realistic model of a network crypto module and empirical data from studies of Internet traffic in conjunction with software experiments and hardware designs. GCM has several useful features: it can accept IVs of arbitrary length, can act as a stand-alone message authentication code (MAC), and can be used as an incremental MAC. We show that GCM is secure in the standard model of concrete security, even when these features are used. We also consider several of its important system-security aspects.
2004
EPRINT
The Extended Codebook (XCB) Mode of Operation
David A. McGrew Scott R. Fluhrer
We describe a block cipher mode of operation that implements a `tweakable' (super) pseudorandom permutation with an arbitrary block length. This mode can be used to provide the best possible security in systems that cannot allow data expansion, such as disk-block encryption and some network protocols. The mode accepts an additional input, which can be used to protect against attacks that manipulate the ciphertext by rearranging the ciphertext blocks. Our mode is similar to a five-round Luby-Rackoff cipher in which the first and last rounds do not use the conventional Feistel structure, but instead use a single block cipher invocation. The third round is a Feistel structure using counter mode as a PRF. The second and fourth rounds are Feistel structures using a universal hash function; we re-use the polynomial hash over a binary field defined in the Galois/Counter Mode (GCM) of operation for block ciphers. This choice provides efficiency in both hardware and software and allows for re-use of implementation effort. XCB also has several useful properties: it accepts arbitrarily-sized plaintexts and associated data, including any plaintexts with lengths that are no smaller than the width of the block cipher. This document is a pre-publication draft manuscript.
2003
EPRINT
Divide and Concatenate: A Scalable Hardware Architecture for Universal MAC
Bo Yang Ramesh Karri David Mcgrew
We present a cryptographic architecture optimization technique called divide-and-concatenate based on two observations: (i) the area of a multiplier and associated data path decreases exponentially and their speeds increase linearly as their operand size is reduced. (ii) in hash functions, message authentication codes and related cryptographic algorithms, two functions are equivalent if they have the same collision probability property. In the proposed approach we divide a 2w-bit data path (with collision probability 2-2w) into two w-bit data paths (each with collision probability 2-w) and concatenate their results to construct an equivalent 2w-bit data path (with a collision probability 2-2w). We applied this technique on NH hash, a universal hash function that uses multiplications and additions. When compared to the 100% overhead associated with duplicating a straightforward 32-bit pipelined NH hash data path, the divide-and-concatenate approach yields a 94% increase in throughput with only 40% hardware overhead. The NH hash associated message authentication code UMAC architecture with collision probability 2-32 that uses four equivalent 8-bit divide-and-concatenate NH hash data paths yields a throughput of 79.2 Gbps with only 3840 FPGA slices when implemented on a Xilinx XC2VP7-7 Field Programmable Gate Array (FPGA).
2000
FSE