International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

An Braeken

Publications

Year
Venue
Title
2006
EPRINT
On Zigzag Functions and Related Objects in New Metric
In \cite{BCS96}, the concept of zigzag function was introduced in relation with oblivious transfer \cite{R84}. This subject has later been studied in \cite{S99,DS01,CFW01}. The definition of zigzag functions has been generalized to $s$-zigzag functions for $2\leq s\leq n$. It turns out that zigzag functions are also interesting combinatorial objects, thanks to their relation with self-intersecting codes and orthogonal arrays \cite{BCS96,S99}. The aim of this work is to formulate these objects with respect to a new metric following the approach proposed in \cite{BNNP} and to investigate the properties of the generalized zigzag functions and related concepts.
2005
FSE
2005
EPRINT
On the Algebraic Immunity of Symmetric Boolean Functions
An Braeken Bart Preneel
In this paper, we analyse the algebraic immunity of symmetric Boolean functions. We identify a set of lowest degree annihilators for symmetric functions and propose an efficient algorithm for computing the algebraic immunity of a symmetric function. The existence of several symmetric functions with maximum algebraic immunity is proven. In this way, a new class of function which have good implementation properties and maximum algebraic immunity is found. We also investigate the existence of symmetric functions with high nonlinearity and reasonable order of algebraic immunity. Finally, we give suggestions how to use symmetric functions in a stream cipher.
2005
EPRINT
Classification of Cubic $(n-4)$-resilient Boolean Functions
Carlet and Charpin classified in \cite{CC04} the set of cubic $(n-4)$-resilient Boolean functions into four different types with respect to the Walsh spectrum and the dimension of the linear space. Based on the classification of $RM(3,6)/RM(1,6)$, we completed the classification of the cubic $(n-4)$-resilient Boolean function by deriving the corresponding ANF and autocorrelation spectrum for each of the four types. In the same time, we solved an open problem of \cite{CC04} by proving that all plateaued cubic $(n-4)$-resilient Boolean functions have dimension of the linear space equal either to $n-5$ or $n-6$.
2004
EPRINT
On Cheating Immune Secret Sharing
This work addresses the problem of cheating prevention in secret sharing. The scheme is said to be $k$-cheating immune if any group of $k$ cheaters has no advantage over honest participants. In this paper we study the constraints of cheating immune secret sharing schemes. We give a necessary and sufficient condition for SSSs to be cheating immune. Then, we improve the upper bound of D'Arco {\textit et.~al} on the number of cheaters tolerated in such scheme. Our proof is much simpler than the proof of D'Arco {\textit et.~al} and relies on certain properties of cryptographic Boolean functions. As a result of independent interest we provide a condition given function to be $t$-resilient and to satisfy the propagation criterion of degree $\ell$ over any finite field.
2004
EPRINT
Covering Radius of the $(n-3)$-rd Order Reed-Muller Code in the Set of Resilient Functions
In this paper, we continue the study of the covering radius in the set of resilient functions, which has been defined by Kurosawa. This new concept is meaningful to cryptography especially in the context of the new class of algebraic attacks on stream ciphers proposed by Courtois and Meier at Eurocrypt 2003 and Courtois at Crypto 2003. In order to resist such attacks the combining Boolean function should be at high distance from lower degree functions. Using a result from coding theory on the covering radius of $(n-3)$-rd Reed-Muller codes, we establish exact values of the the covering radius of $RM(n-3,n)$ in the set of $1$-resilient Boolean functions of $n$ variables, when $\lfloor n/2 \rfloor = 1 \mod\;2$. We also improve the lower bounds for covering radius of the Reed-Muller codes $RM(r,n)$ in the set of $t$-resilient functions, where $\lceil r/2 \rceil = 0 \mod\;2$, $t \leq n-r-2$ and $n\geq r+3$.
2004
EPRINT
Classification of Highly Nonlinear Boolean Power Functions with a Randomised Algorithm for Checking Normality
A Boolean function is called normal if it is constant on flats of certain dimensions. This property is relevant for the construction and analysis of cryptosystems. This paper presents an asymmetric Monte Carlo algorithm to determine whether a given Boolean function is normal. Our algorithm is far faster than the best known (deterministic) algorithm of Daum et al. In a first phase, it checks for flats of low dimension whether the given Boolean function is constant on them and combines such flats to flats of higher dimension in a second phase. This way, the algorithm is much faster than exhaustive search. Moreover, the algorithm benefits from randomising the first phase. In addition, by evaluating several flats implicitly in parallel, the time-complexity of the algorithm decreases further. As an application, we determine the level of normality for several, highly nonlinear Boolean power functions.
2004
EPRINT
Classification of Boolean Functions of 6 Variables or Less with Respect to Cryptographic Properties
This paper presents an efficient approach for classification of the affine equivalence classes of cosets of the first order Reed-Muller code with respect to cryptographic properties such as correlation-immunity, resiliency and propagation characteristics. First, we apply the method to completely classify all the $48$ classes into which the general affine group $AGL(2,5)$ partitions the cosets of $RM(1,5)$. Second, we describe how to find the affine equivalence classes together with their sizes of Boolean functions in 6 variables. We perform the same classification for these classes. Moreover, we also determine the classification of $RM(3,7)/RM(1,7)$. We also study the algebraic immunity of the corresponding affine equivalence classes. Moreover, several relations are derived between the algebraic immunity and other cryptographic properties. Finally, we introduce two new indicators which can be used to distinguish affine inequivalent Boolean functions when the known criteria are not sufficient. From these indicators a method can be derived for finding the affine relation between two functions (if such exists). The efficiency of the method depends on the structure of the Walsh or autocorrelation spectrum.
2004
EPRINT
On Boolean Functions with Generalized Cryptographic Properties
By considering a new metric, we generalize cryptographic properties of Boolean functions such as resiliency and propagation characteristics. These new definitions result in a better understanding of the properties of Boolean functions and provide a better insight in the space defined by this metric. This approach leads to the construction of ``hand-made'' Boolean functions, i.e., functions for which the security with respect to some specific monotone sets of inputs is considered, instead of the security with respect to all possible monotone sets with the same cardinality, as in the usual definitions. This approach has the advantage that some trade-offs between important properties of Boolean functions can be relaxed.
2003
EUROCRYPT