CryptoDB
Sravya Yandamuri
Publications
Year
Venue
Title
2025
CRYPTO
Nearly Optimal Parallel Broadcast in the Plain Public Key Model
Abstract
Parallel Byzantine broadcast (PBC) (also known as Interactive Consistency), is a fundamental problem in distributed computing and cryptography which asks that all parties reliably distribute a message to all other parties. We give the first communication-efficient protocol for PBC in the model with plain public keys (i.e., no trusted dealer) which achieves security against an adaptive adversary that can corrupt up to $t<n/2$ parties.
Our protocol runs in total communication complexity $O(n^2\ell\log(n)+n\kappa^2\log^4(n))$ bits to succeed with probability $1-2^{-\kappa}$, where $\ell$ is the length of a message. All prior protocols either rely on a trusted setup or require at least $O(n^3)$ communication complexity. As a stepping stone, we present a binary consensus protocol with the same resilience and success probability that sends $O(n^2\kappa\log(n)+n\kappa^2\log^3(n))$ bits.
We achieve these results based on a highly efficient gossip procedure that implements echo operations at low cost, and might prove useful in deriving further efficient protocols relying on simple cryptographic tools.
2025
CRYPTO
Leader Election with Poly-logarithmic Communication Per Party
Abstract
The leader election problem requires a set of $n$ parties, out of which up to $t$ can be Byzantine, to elect a leader uniformly at random such that no two parties disagree on the elected leader and an honest leader is elected with constant probability. The Scalable Leader Election protocol published in SODA'2006 is an important breakthrough in solving this problem efficiently for all but $o(1)$ of the parties. They achieve a protocol for $t < (\frac{1}{3} - \epsilon)n$ (for $\epsilon = o(1)$) in the full-information setting such that every party only sends $\polylog(n)$ bits.
In this paper, we revisit their work and show that there are subtleties in the protocol that are not dealt with in the analysis. In particular, two mechanisms related to ``silencing'' parties and dealing with ``bad nodes'' are at odds with each other, which is why the existing analysis is insufficient. We present these concerns in detail and subsequently present a modification to their protocol with a corresponding analysis to solve leader election with the desired metrics.
Coauthors
- Amey Bhangale (1)
- Ran Gelles (1)
- Christoph Lenzen (1)
- Chen-Da Liu-Zhang (1)
- Julian Loss (2)
- Kartik Nayak (1)
- Sravya Yandamuri (2)