International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Artur Riazanov

Publications

Year
Venue
Title
2025
CRYPTO
Breaking Verifiable Delay Functions in the Random Oracle Model
Ziyi Guan Artur Riazanov Weiqiang Yuan
This work resolves the open problem of whether verifiable delay functions (VDFs) can be constructed in the random oracle model. A VDF is a cryptographic primitive that requires a long time to compute (even with parallelization), but produces a unique output that is efficiently and publicly verifiable. We prove that VDFs do not exist in the random oracle model. This also rules out black-box constructions of VDFs from other cryptographic primitives, such as one-way functions, one-way permutations and collision-resistant hash functions. Prior to our work, Mahmoody, Smith and Wu (ICALP 2020) prove that \emph{perfectly unique} VDFs (a much stronger form of VDFs) do not exist in the random oracle model; on the other hand, Ephraim, Freitag, Komargodski, and Pass (Eurocrypt 2020) construct VDFs in the random oracle model assuming the hardness of repeated squaring. Our result is optimal -- we bridge the current gap between previously known impossibility results and existing constructions. We initiate the study of \emph{proof of work functions}, a new cryptographic primitive that shares similarities with both VDFs and proof of works. We show that a stronger form of it does not exist in the random oracle model, leaving open the fascinating possibility of a random-oracle-based construction.

Coauthors

Ziyi Guan (1)
Artur Riazanov (1)
Weiqiang Yuan (1)